These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7685726)

  • 1. Poly(A) RNA in Bacillus subtilis: identification of the polyadenylylation site of flagellin mRNA.
    Cao GJ; Sarkar N
    FEMS Microbiol Lett; 1993 Apr; 108(3):281-5. PubMed ID: 7685726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(A) RNA in Escherichia coli: nucleotide sequence at the junction of the lpp transcript and the polyadenylate moiety.
    Cao GJ; Sarkar N
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7546-50. PubMed ID: 1380161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Bacillus subtilis flagellin gene (hag) is transcribed by the sigma 28 form of RNA polymerase.
    Mirel DB; Chamberlin MJ
    J Bacteriol; 1989 Jun; 171(6):3095-101. PubMed ID: 2498284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stationary phase-specific mRNAs in Escherichia coli are polyadenylated.
    Cao GJ; Sarkar N
    Biochem Biophys Res Commun; 1997 Oct; 239(1):46-50. PubMed ID: 9345267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-translation mediated by Bacillus subtilis tmRNA.
    Ito K; Tadaki T; Lee S; Takada K; Muto A; Himeno H
    FEBS Lett; 2002 Apr; 516(1-3):245-52. PubMed ID: 11959141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of decay of the cry1Aa mRNA in Bacillus subtilis.
    Vázquez-Cruz C; Olmedo-Alvarez G
    J Bacteriol; 1997 Oct; 179(20):6341-8. PubMed ID: 9335281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription and processing of Bacillus subtilis small cytoplasmic RNA.
    Struck JC; Hartmann RK; Toschka HY; Erdmann VA
    Mol Gen Genet; 1989 Feb; 215(3):478-82. PubMed ID: 2468993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding.
    Yakhnin H; Pandit P; Petty TJ; Baker CS; Romeo T; Babitzke P
    Mol Microbiol; 2007 Jun; 64(6):1605-20. PubMed ID: 17555441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation.
    LaVallie ER; Stahl ML
    J Bacteriol; 1989 Jun; 171(6):3085-94. PubMed ID: 2498283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro.
    Grundy FJ; Henkin TM
    J Bacteriol; 2004 Aug; 186(16):5392-9. PubMed ID: 15292140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli.
    Condon C; Putzer H; Luo D; Grunberg-Manago M
    J Mol Biol; 1997 May; 268(2):235-42. PubMed ID: 9159466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis.
    Condon C; Putzer H; Grunberg-Manago M
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6992-7. PubMed ID: 8692931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of polyadenylation and nucleolytic cleavage in the filamentous phage mRNA processing and decay pathways in Escherichia coli.
    Goodrich AF; Steege DA
    RNA; 1999 Jul; 5(7):972-85. PubMed ID: 10411140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagellin as a biomarker for Bacillus subtilis strains; application to the DB9011 strain and the study of interspecific diversity in amino-acid sequences.
    Asano Y; Onishi H; Tajima K; Shinozawa T
    Biosci Biotechnol Biochem; 2001 May; 65(5):1218-22. PubMed ID: 11440144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner.
    Hambraeus G; Rutberg B
    Arch Microbiol; 2004 Feb; 181(2):137-43. PubMed ID: 14685649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis.
    Pellegrini O; Nezzar J; Marchfelder A; Putzer H; Condon C
    EMBO J; 2003 Sep; 22(17):4534-43. PubMed ID: 12941704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT.
    Langbein I; Bachem S; Stülke J
    J Mol Biol; 1999 Nov; 293(4):795-805. PubMed ID: 10543968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity.
    Schilling O; Langbein I; Müller M; Schmalisch MH; Stülke J
    Nucleic Acids Res; 2004; 32(9):2853-64. PubMed ID: 15155854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a second flagellin gene and functional characterization of a sigma70-like promoter upstream of a Leptospira borgpetersenii flaB gene.
    Lin M; Dan H; Li Y
    Curr Microbiol; 2004 Feb; 48(2):145-52. PubMed ID: 15057484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation and degradation of RNA in bacteria.
    Condon C
    Curr Opin Microbiol; 2007 Jun; 10(3):271-8. PubMed ID: 17560162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.