BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7686069)

  • 1. Crevice-forming mutants of bovine pancreatic trypsin inhibitor: stability changes and new hydrophobic surface.
    Kim KS; Tao F; Fuchs J; Danishefsky AT; Housset D; Wlodawer A; Woodward C
    Protein Sci; 1993 Apr; 2(4):588-96. PubMed ID: 7686069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crevice-forming mutants in the rigid core of bovine pancreatic trypsin inhibitor: crystal structures of F22A, Y23A, N43G, and F45A.
    Danishefsky AT; Housset D; Kim KS; Tao F; Fuchs J; Woodward C; Wlodawer A
    Protein Sci; 1993 Apr; 2(4):577-87. PubMed ID: 8518731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen exchange identifies native-state motional domains important in protein folding.
    Kim KS; Fuchs JA; Woodward CK
    Biochemistry; 1993 Sep; 32(37):9600-8. PubMed ID: 7690587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of single peptide bond cleavage in bovine pancreatic trypsin inhibitor (BPTI).
    Buczek O; Krowarsch D; Otlewski J
    Protein Sci; 2002 Apr; 11(4):924-32. PubMed ID: 11910035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native-like interactions favored in the unfolded bovine pancreatic trypsin inhibitor have different roles in folding.
    Li R; Battiste JL; Woodward C
    Biochemistry; 2002 Feb; 41(7):2246-53. PubMed ID: 11841216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability.
    Kowalski JM; Parekh RN; Wittrup KD
    Biochemistry; 1998 Feb; 37(5):1264-73. PubMed ID: 9477952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of individual side-chains to the stability of BPTI examined by alanine-scanning mutagenesis.
    Yu MH; Weissman JS; Kim PS
    J Mol Biol; 1995 Jun; 249(2):388-97. PubMed ID: 7540212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designed replacement of an internal hydration water molecule in BPTI: structural and functional implications of a glycine-to-serine mutation.
    Berndt KD; Beunink J; Schröder W; Wüthrich K
    Biochemistry; 1993 May; 32(17):4564-70. PubMed ID: 7683491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution structure of bovine pancreatic trypsin inhibitor with altered binding loop sequence.
    Czapinska H; Otlewski J; Krzywda S; Sheldrick GM; Jaskólski M
    J Mol Biol; 2000 Feb; 295(5):1237-49. PubMed ID: 10653700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin.
    Castro MJ; Anderson S
    Biochemistry; 1996 Sep; 35(35):11435-46. PubMed ID: 8784199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of bovine pancreatic trypsin inhibitor (BPTI) variants in which almost half the residues are alanine.
    Kuroda Y; Kim PS
    J Mol Biol; 2000 May; 298(3):493-501. PubMed ID: 10772865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly destabilizing mutation, G37A, of the bovine pancreatic trypsin inhibitor retains the average native conformation but greatly increases local flexibility.
    Battiste JL; Li R; Woodward C
    Biochemistry; 2002 Feb; 41(7):2237-45. PubMed ID: 11841215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen exchange in BPTI variants that do not share a common disulfide bond.
    Schulman BA; Kim PS
    Protein Sci; 1994 Dec; 3(12):2226-32. PubMed ID: 7538845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of hydrogen bonding residues in the BPTI folding pathway.
    Bulaj G; Goldenberg DP
    J Mol Biol; 2001 Oct; 313(3):639-56. PubMed ID: 11676545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures.
    Krystek S; Stouch T; Novotny J
    J Mol Biol; 1993 Dec; 234(3):661-79. PubMed ID: 8254666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino-acid substitutions at the fully exposed P1 site of bovine pancreatic trypsin inhibitor affect its stability.
    Krowarsch D; Otlewski J
    Protein Sci; 2001 Apr; 10(4):715-24. PubMed ID: 11274462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic surface residues can stabilize a protein through improved water-protein interactions.
    Islam MM; Kobayashi K; Kidokoro SI; Kuroda Y
    FEBS J; 2019 Oct; 286(20):4122-4134. PubMed ID: 31175706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.
    Woodward CK; Hilton BD
    Biophys J; 1980 Oct; 32(1):561-75. PubMed ID: 7248461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of N-terminal extension peptides on the structure and stability of bovine pancreatic trypsin inhibitor studied by 1H n.m.r.
    Lauritzen C; Skovgaard O; Hansen PE; Tüchsen E
    Int J Biol Macromol; 1992 Dec; 14(6):326-32. PubMed ID: 1282363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.