BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7686365)

  • 1. Isolation and characterization of renal cortical membranes using an aqueous two-phase partition technique.
    Hammond TG; Majewski RR; Onorato JJ; Brazy PC; Morré DJ
    Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):743-8. PubMed ID: 7686365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation.
    Mircheff AK; Ives HE; Yee VJ; Warnock DG
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F853-8. PubMed ID: 6331175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation.
    Evers C; Haase W; Murer H; Kinne R
    Membr Biochem; 1978; 1(3-4):203-19. PubMed ID: 756488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of luminal and antiluminal membranes from dog kidney cortex.
    Kinsella JL; Holohan PD; Pessah NI; Ross CR
    Biochim Biophys Acta; 1979 Apr; 552(3):468-77. PubMed ID: 221018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the preparation method on Na+-H+ exchange and ion permeabilities in rat renal brush-border membranes.
    Sabolić I; Burckhardt G
    Biochim Biophys Acta; 1984 May; 772(2):140-8. PubMed ID: 6326822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techniques for isolation of brush-border and basolateral membrane vesicles from dog kidney cortex.
    Hilden SA; Johns CA; Guggino WB; Madias NE
    Biochim Biophys Acta; 1989 Jul; 983(1):77-81. PubMed ID: 2758052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid method for the isolation of kidney brush border membranes.
    Malathi P; Preiser H; Fairclough P; Mallett P; Crane RK
    Biochim Biophys Acta; 1979 Jun; 554(1):259-63. PubMed ID: 454602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of basolateral and brush-border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction.
    Boumendil-Podevin EF; Podevin RA
    Biochim Biophys Acta; 1983 Oct; 735(1):86-94. PubMed ID: 6313056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of renal brush borders.
    Morré DJ; Hammond T
    Curr Protoc Cell Biol; 2007 Mar; Chapter 3():3.26.1-3.26.14. PubMed ID: 18228514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent H+ pump in membrane vesicles from rat kidney cortex.
    Sabolić I; Haase W; Burckhardt G
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F835-44. PubMed ID: 2408487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of brush border membrane vesicles from rat renal cortex by size-exclusion chromatography.
    Nagasawa M; Koide H; Ohsawa K; Hoshi T
    Anal Biochem; 1992 Mar; 201(2):301-5. PubMed ID: 1632517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution and fractionation of renal brush border transport proteins.
    Koepsell H; Seibicke S
    Methods Enzymol; 1990; 191():583-605. PubMed ID: 2074777
    [No Abstract]   [Full Text] [Related]  

  • 13. Simultaneous preparation of basolateral and brush-border membrane vesicles from sea bass intestinal epithelium.
    Drai P; Albertini-Berhaut J; Lafaurie M; Sudaka P; Giudicelli J
    Biochim Biophys Acta; 1990 Mar; 1022(3):251-9. PubMed ID: 2156552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the distribution of Na+/H+ exchanger isoforms among the plasma membrane subfractions of bovine kidney cortex: reevaluation of methods for fractionating the brush-border and the basolateral membranes.
    Yoshioka S; Suzuki T; Kawakita M
    J Biochem; 1997 Sep; 122(3):641-6. PubMed ID: 9348096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidity of brush border and basolateral membranes from human kidney cortex.
    Le Grimellec C; Carrière S; Cardinal J; Giocondi MC
    Am J Physiol; 1983 Aug; 245(2):F227-31. PubMed ID: 6309013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+(Li+)-H+ exchange in rat renal cortical vesicles with endosomal characteristics.
    Sabolić I; Brown D
    Am J Physiol; 1990 May; 258(5 Pt 2):F1245-53. PubMed ID: 1692448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroid hormones increase Na+-H+ exchange activity in renal brush border membranes.
    Kinsella J; Sacktor B
    Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3606-10. PubMed ID: 2987936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential binding of folates by rat renal cortex brush border and basolateral membrane preparations.
    Corrocher R; Abramson RG; King VF; Schreiber C; Dikman S; Waxman S
    Proc Soc Exp Biol Med; 1985 Jan; 178(1):73-84. PubMed ID: 3966077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of glutamine by rat kidney brush-border membrane vesicles.
    McFarlane-Anderson N; Alleyne GA
    Biochem J; 1979 Aug; 182(2):295-300. PubMed ID: 41516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.