These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7686365)

  • 1. Isolation and characterization of renal cortical membranes using an aqueous two-phase partition technique.
    Hammond TG; Majewski RR; Onorato JJ; Brazy PC; Morré DJ
    Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):743-8. PubMed ID: 7686365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle preparation.
    Mircheff AK; Ives HE; Yee VJ; Warnock DG
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F853-8. PubMed ID: 6331175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation.
    Evers C; Haase W; Murer H; Kinne R
    Membr Biochem; 1978; 1(3-4):203-19. PubMed ID: 756488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of luminal and antiluminal membranes from dog kidney cortex.
    Kinsella JL; Holohan PD; Pessah NI; Ross CR
    Biochim Biophys Acta; 1979 Apr; 552(3):468-77. PubMed ID: 221018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the preparation method on Na+-H+ exchange and ion permeabilities in rat renal brush-border membranes.
    Sabolić I; Burckhardt G
    Biochim Biophys Acta; 1984 May; 772(2):140-8. PubMed ID: 6326822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techniques for isolation of brush-border and basolateral membrane vesicles from dog kidney cortex.
    Hilden SA; Johns CA; Guggino WB; Madias NE
    Biochim Biophys Acta; 1989 Jul; 983(1):77-81. PubMed ID: 2758052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid method for the isolation of kidney brush border membranes.
    Malathi P; Preiser H; Fairclough P; Mallett P; Crane RK
    Biochim Biophys Acta; 1979 Jun; 554(1):259-63. PubMed ID: 454602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of basolateral and brush-border membranes from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction.
    Boumendil-Podevin EF; Podevin RA
    Biochim Biophys Acta; 1983 Oct; 735(1):86-94. PubMed ID: 6313056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of renal brush borders.
    Morré DJ; Hammond T
    Curr Protoc Cell Biol; 2007 Mar; Chapter 3():3.26.1-3.26.14. PubMed ID: 18228514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent H+ pump in membrane vesicles from rat kidney cortex.
    Sabolić I; Haase W; Burckhardt G
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F835-44. PubMed ID: 2408487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of brush border membrane vesicles from rat renal cortex by size-exclusion chromatography.
    Nagasawa M; Koide H; Ohsawa K; Hoshi T
    Anal Biochem; 1992 Mar; 201(2):301-5. PubMed ID: 1632517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution and fractionation of renal brush border transport proteins.
    Koepsell H; Seibicke S
    Methods Enzymol; 1990; 191():583-605. PubMed ID: 2074777
    [No Abstract]   [Full Text] [Related]  

  • 13. Simultaneous preparation of basolateral and brush-border membrane vesicles from sea bass intestinal epithelium.
    Drai P; Albertini-Berhaut J; Lafaurie M; Sudaka P; Giudicelli J
    Biochim Biophys Acta; 1990 Mar; 1022(3):251-9. PubMed ID: 2156552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the distribution of Na+/H+ exchanger isoforms among the plasma membrane subfractions of bovine kidney cortex: reevaluation of methods for fractionating the brush-border and the basolateral membranes.
    Yoshioka S; Suzuki T; Kawakita M
    J Biochem; 1997 Sep; 122(3):641-6. PubMed ID: 9348096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidity of brush border and basolateral membranes from human kidney cortex.
    Le Grimellec C; Carrière S; Cardinal J; Giocondi MC
    Am J Physiol; 1983 Aug; 245(2):F227-31. PubMed ID: 6309013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na+(Li+)-H+ exchange in rat renal cortical vesicles with endosomal characteristics.
    Sabolić I; Brown D
    Am J Physiol; 1990 May; 258(5 Pt 2):F1245-53. PubMed ID: 1692448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroid hormones increase Na+-H+ exchange activity in renal brush border membranes.
    Kinsella J; Sacktor B
    Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3606-10. PubMed ID: 2987936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential binding of folates by rat renal cortex brush border and basolateral membrane preparations.
    Corrocher R; Abramson RG; King VF; Schreiber C; Dikman S; Waxman S
    Proc Soc Exp Biol Med; 1985 Jan; 178(1):73-84. PubMed ID: 3966077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of glutamine by rat kidney brush-border membrane vesicles.
    McFarlane-Anderson N; Alleyne GA
    Biochem J; 1979 Aug; 182(2):295-300. PubMed ID: 41516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.