These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7686579)

  • 1. Correlated ion flux through parallel pores: application to channel subconductance states.
    Berry RM; Edmonds DT
    J Membr Biol; 1993 Apr; 133(1):77-84. PubMed ID: 7686579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channels as multi-ion single-file pores.
    Hille B; Schwarz W
    J Gen Physiol; 1978 Oct; 72(4):409-42. PubMed ID: 722275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of subconductance levels arising from a single ion channel.
    Dani JA; Fox JA
    J Theor Biol; 1991 Dec; 153(3):401-23. PubMed ID: 1724679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance.
    Spronk SA; Elmore DE; Dougherty DA
    Biophys J; 2006 May; 90(10):3555-69. PubMed ID: 16500980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curare binding and the curare-induced subconductance state of the acetylcholine receptor channel.
    Strecker GJ; Jackson MB
    Biophys J; 1989 Oct; 56(4):795-806. PubMed ID: 2479422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel explanation for fluctuations of ion current through narrow pores.
    Korchev YE; Bashford CL; Alder GM; Apel PY; Edmonds DT; Lev AA; Nandi K; Zima AV; Pasternak CA
    FASEB J; 1997 Jun; 11(7):600-8. PubMed ID: 9212084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical studies on Tl+ interactions with the cation-selective channel of the sarcoplasmic reticulum.
    Fox J; Ciani S
    J Membr Biol; 1985; 84(1):9-23. PubMed ID: 2582129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic acidosis induces multiple conductance states in ATP-sensitive potassium channels of cardiac myocytes.
    Fan Z; Furukawa T; Sawanobori T; Makielski JC; Hiraoka M
    J Membr Biol; 1993 Nov; 136(2):169-79. PubMed ID: 8107073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple model for multi-ion permeation. Single-vacancy conduction in a simple pore model.
    Schumaker MF; MacKinnon R
    Biophys J; 1990 Oct; 58(4):975-84. PubMed ID: 1701102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ion channel behavior of the nuclear pore complex.
    Bustamante JO; Hanover JA; Liepins A
    J Membr Biol; 1995 Aug; 146(3):239-51. PubMed ID: 8568839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pore structure on energy barriers and applied voltage profiles. II. Unsymmetrical channels.
    Jordan PC
    Biophys J; 1984 Jun; 45(6):1101-7. PubMed ID: 6331540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the voltage-dependent properties of a volume-sensitive anion conductance.
    Jackson PS; Strange K
    J Gen Physiol; 1995 May; 105(5):661-76. PubMed ID: 7544824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of transmembrane pores.
    Xu C; Lu P; Gamal El-Din TM; Pei XY; Johnson MC; Uyeda A; Bick MJ; Xu Q; Jiang D; Bai H; Reggiano G; Hsia Y; Brunette TJ; Dou J; Ma D; Lynch EM; Boyken SE; Huang PS; Stewart L; DiMaio F; Kollman JM; Luisi BF; Matsuura T; Catterall WA; Baker D
    Nature; 2020 Sep; 585(7823):129-134. PubMed ID: 32848250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K channel subconductance levels result from heteromeric pore conformations.
    Chapman ML; VanDongen AM
    J Gen Physiol; 2005 Aug; 126(2):87-103. PubMed ID: 16043772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water in ion channels and pores--simulation studies.
    Sansom MS; Bond P; Beckstein O; Biggin PC; Faraldo-Gómez J; Law RJ; Patargias G; Tieleman DP
    Novartis Found Symp; 2002; 245():66-78; discussion 79-83, 165-8. PubMed ID: 12027016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier-like behaviour from a static but electrically responsive model pore.
    Berry R; Edmonds DT
    J Theor Biol; 1992 Jan; 154(2):249-60. PubMed ID: 1374140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-forming protein from Entamoeba histolytica forms voltage- and pH-controlled multi-state channels with properties similar to those of the barrel-stave aggregates.
    Keller F; Hanke W; Trissl D; Bakker-Grunwald T
    Biochim Biophys Acta; 1989 Jun; 982(1):89-93. PubMed ID: 2472838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical description of the ion transport across nanopores with titratable fixed charges: analogies between ion channels and synthetic pores.
    Ramírez P; Aguilella-Arzo M; Alcaraz A; Cervera J; Aguilella VM
    Cell Biochem Biophys; 2006; 44(2):287-312. PubMed ID: 16456229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics.
    Winegar BD; Haws CM; Lansman JB
    J Gen Physiol; 1996 Mar; 107(3):433-43. PubMed ID: 8868053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent gating of single pores in CLC-0 chloride channels.
    Ludewig U; Pusch M; Jentsch TJ
    Biophys J; 1997 Aug; 73(2):789-97. PubMed ID: 9251795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.