These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 7686850)

  • 1. Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man.
    Calancie B; Broton JG; Klose KJ; Traad M; Difini J; Ayyar DR
    Electroencephalogr Clin Neurophysiol; 1993 Jun; 89(3):177-86. PubMed ID: 7686850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration attenuates spasm-like activity in humans with spinal cord injury.
    DeForest BA; Bohorquez J; Perez MA
    J Physiol; 2020 Jul; 598(13):2703-2717. PubMed ID: 32298483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats.
    Caron G; Bilchak JN; Côté MP
    J Physiol; 2020 Oct; 598(20):4621-4642. PubMed ID: 32721039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor training improves premotoneuronal control after chronic spinal cord injury.
    Knikou M; Mummidisetty CK
    J Neurophysiol; 2014 Jun; 111(11):2264-75. PubMed ID: 24598526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal motoneuron excitability after acute spinal cord injury in humans.
    Leis AA; Kronenberg MF; Stĕtkárová I; Paske WC; Stokić DS
    Neurology; 1996 Jul; 47(1):231-7. PubMed ID: 8710084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery cycles of posterior root-muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord.
    Hofstoetter US; Freundl B; Binder H; Minassian K
    PLoS One; 2019; 14(12):e0227057. PubMed ID: 31877192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury.
    Knikou M
    Exp Brain Res; 2005 Dec; 167(3):381-93. PubMed ID: 16059682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration training after chronic spinal cord injury: Evidence for persistent segmental plasticity.
    Yen CL; McHenry CL; Petrie MA; Dudley-Javoroski S; Shields RK
    Neurosci Lett; 2017 Apr; 647():129-132. PubMed ID: 28315725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury.
    Kim HE; Corcos DM; Hornby TG
    J Neurophysiol; 2015 Jul; 114(1):427-39. PubMed ID: 25972590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury.
    Schindler-Ivens S; Shields RK
    Exp Brain Res; 2000 Jul; 133(2):233-41. PubMed ID: 10968224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury.
    Chang SH; Tseng SC; McHenry CL; Littmann AE; Suneja M; Shields RK
    Clin Neurophysiol; 2012 Mar; 123(3):558-68. PubMed ID: 21963319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latency of changes in spinal motoneuron excitability evoked by transcranial magnetic brain stimulation in spinal cord injured individuals.
    Alexeeva N; Broton JG; Calancie B
    Electroencephalogr Clin Neurophysiol; 1998 Aug; 109(4):297-303. PubMed ID: 9751291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depression and recovery of reflex amplitude during electrical stimulation after spinal cord injury.
    Clair-Auger JM; Lagerquist O; Collins DF
    Clin Neurophysiol; 2013 Apr; 124(4):723-31. PubMed ID: 23117117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of posture and stimulus parameters on post-activation depression of the soleus H-reflex in individuals with chronic spinal cord injury.
    Field-Fote EC; Brown KM; Lindley SD
    Neurosci Lett; 2006 Dec; 410(1):37-41. PubMed ID: 17046161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity.
    Calancie B; Alexeeva N; Broton JG; Molano MR
    Clin Neurophysiol; 2005 Jan; 116(1):75-86. PubMed ID: 15589186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord.
    Knikou M
    Spinal Cord; 2007 Jan; 45(1):69-77. PubMed ID: 16534501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury.
    Yamaguchi T; Fujiwara T; Tsai YA; Tang SC; Kawakami M; Mizuno K; Kodama M; Masakado Y; Liu M
    Exp Brain Res; 2016 Jun; 234(6):1469-78. PubMed ID: 26790423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From spinal shock to spasticity: neuronal adaptations to a spinal cord injury.
    Hiersemenzel LP; Curt A; Dietz V
    Neurology; 2000 Apr; 54(8):1574-82. PubMed ID: 10762496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans.
    Calancie B; Molano MR; Broton JG
    Clin Neurophysiol; 2004 Oct; 115(10):2350-63. PubMed ID: 15351378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Windup of flexion reflexes in chronic human spinal cord injury: a marker for neuronal plateau potentials?
    Hornby TG; Rymer WZ; Benz EN; Schmit BD
    J Neurophysiol; 2003 Jan; 89(1):416-26. PubMed ID: 12522190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.