These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 7686966)

  • 1. Synaptic loss following removal of serotoninergic fibers in newly hatched and adult chickens.
    Okado N; Cheng L; Tanatsugu Y; Hamada S; Hamaguchi K
    J Neurobiol; 1993 May; 24(5):687-98. PubMed ID: 7686966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional differences of serotonin-mediated synaptic plasticity in the chicken spinal cord with development and aging.
    Chen L; Hamaguchi K; Hamada S; Okado N
    J Neural Transplant Plast; 1997; 6(1):41-8. PubMed ID: 8959550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical study on development of serotonin-, substance P-, and enkephalin-positive fibers in the rat spinal motor nucleus.
    Ozaki S; Kudo N; Okado N
    J Comp Neurol; 1992 Nov; 325(3):462-70. PubMed ID: 1280285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in density and distribution of serotoninergic fibers in the chick spinal cord.
    Kojima T; Homma S; Sako H; Shimizu I; Okada A; Okado N
    J Comp Neurol; 1988 Jan; 267(4):580-9. PubMed ID: 3346378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental regulation of spinal motoneurons by monoaminergic nerve fibers.
    Tanaka H; Takahashi S; Oki J
    J Peripher Nerv Syst; 1997; 2(4):323-32. PubMed ID: 10975741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation of SP- and 5HT-containing terminals in lamina II of rat spinal cord following dorsal rhizotomy: quantitative EM-immunocytochemical studies.
    Zhang B; Goldberger ME; Murray M
    Exp Neurol; 1993 Sep; 123(1):51-63. PubMed ID: 7691648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of serotonin inhibition on neuronal and astrocyte plasticity in the phrenic nucleus 4 h following C2 spinal cord hemisection.
    Hadley SD; Walker PD; Goshgarian HG
    Exp Neurol; 1999 Dec; 160(2):433-45. PubMed ID: 10619560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture.
    Ullian EM; Harris BT; Wu A; Chan JR; Barres BA
    Mol Cell Neurosci; 2004 Feb; 25(2):241-51. PubMed ID: 15019941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early appearance of acetylcholinergic, serotoninergic, and peptidergic neurons and fibers in the developing human central nervous system.
    Yew DT; Chan WY
    Microsc Res Tech; 1999 Jun; 45(6):389-400. PubMed ID: 10402266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pattern of distribution of serotoninergic fibers in the anterior horn of the chick spinal cord.
    Homma S; Sako H; Kohno K; Okado N
    Anat Embryol (Berl); 1988; 179(1):25-31. PubMed ID: 3213953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between substance P-immunoreactive central terminals and gamma-aminobutyric acid-immunoreactive elements in synaptic glomeruli in the lamina II of the chicken spinal cord.
    Sakamoto H; Atsumi S
    Neurosci Res; 1995 Nov; 23(4):335-43. PubMed ID: 8602272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Synapses developing process of neuroblasts after acute spinal cord transplantation in rats].
    Xue Y; Han ZC; Guo SF
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):282-5. PubMed ID: 12920714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testosterone prevents synaptic loss in the perineal motoneuron pool in the spinal cord in male rats exposed to chronic stress.
    Matsumoto A
    Stress; 2005 Jun; 8(2):133-40. PubMed ID: 16019604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of tachykinins in the cat spinal cord.
    Sánchez L; Coveñas R; Aguirre JA; Narváez JA; Gómez A; Tramu G
    Arch Ital Biol; 2005 Feb; 143(1):29-50. PubMed ID: 15844667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord.
    Alvarez FJ; Dewey DE; Harrington DA; Fyffe RE
    J Comp Neurol; 1997 Mar; 379(1):150-70. PubMed ID: 9057118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The central distribution pattern of primary afferent fibers innervating the thigh muscle posterior iliotibialis in the chicken.
    Maeshima T; Ito R; Matsukawa M; Usuba M; Okado N
    J Hirnforsch; 1999; 39(3):383-90. PubMed ID: 10536871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two kinds of serotoninergic fibers in the ventral horn of spinal cord of the newly hatched chick.
    Okado N; Imagawa H; Tanatsugu Y
    Neurosci Res Suppl; 1990; 13():S31-6. PubMed ID: 2259486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pinealectomy on the morphology of the chick cervical spinal cord: a stereological and histopathological study.
    Turgut M; Turkkani Tunc A; Aslan H; Yazici AC; Kaplan S
    Brain Res; 2007 Jan; 1129(1):166-73. PubMed ID: 17157276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive structural remodeling of the injured spinal cord revealed by phosphorylated MAP1B in sprouting axons and degenerating neurons.
    Soares S; Barnat M; Salim C; von Boxberg Y; Ravaille-Veron M; Nothias F
    Eur J Neurosci; 2007 Sep; 26(6):1446-61. PubMed ID: 17880387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.