These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 7687224)
1. The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Nuccitelli R; Yim DL; Smart T Dev Biol; 1993 Jul; 158(1):200-12. PubMed ID: 7687224 [TBL] [Abstract][Full Text] [Related]
2. Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs. Snow P; Yim DL; Leibow JD; Saini S; Nuccitelli R Dev Biol; 1996 Nov; 180(1):108-18. PubMed ID: 8948578 [TBL] [Abstract][Full Text] [Related]
3. A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. Wagner J; Fall CP; Hong F; Sims CE; Allbritton NL; Fontanilla RA; Moraru II; Loew LM; Nuccitelli R Cell Calcium; 2004 May; 35(5):433-47. PubMed ID: 15003853 [TBL] [Abstract][Full Text] [Related]
4. Calcium release at fertilization of Xenopus eggs requires type I IP(3) receptors, but not SH2 domain-mediated activation of PLCgamma or G(q)-mediated activation of PLCbeta. Runft LL; Watras J; Jaffe LA Dev Biol; 1999 Oct; 214(2):399-411. PubMed ID: 10525343 [TBL] [Abstract][Full Text] [Related]
5. The two intracellular Ca2+ release channels, ryanodine receptor and inositol 1,4,5-trisphosphate receptor, play different roles during fertilization in ascidians. Albrieux M; Sardet C; Villaz M Dev Biol; 1997 Sep; 189(2):174-85. PubMed ID: 9299112 [TBL] [Abstract][Full Text] [Related]
6. Sperm increase inositol 1,4,5-trisphosphate mass in Xenopus laevis eggs preinjected with calcium buffers or heparin. Stith BJ; Espinoza R; Roberts D; Smart T Dev Biol; 1994 Sep; 165(1):206-15. PubMed ID: 8088439 [TBL] [Abstract][Full Text] [Related]
7. Injection of a sperm extract triggers egg activation in the newt Cynops pyrrhogaster. Yamamoto S; Kubota HY; Yoshimoto Y; Iwao Y Dev Biol; 2001 Feb; 230(1):89-99. PubMed ID: 11161564 [TBL] [Abstract][Full Text] [Related]
8. The existence of inositol 1,4,5-trisphosphate and ryanodine receptors in mature bovine oocytes. Yue C; White KL; Reed WA; Bunch TD Development; 1995 Aug; 121(8):2645-54. PubMed ID: 7545575 [TBL] [Abstract][Full Text] [Related]
9. Sources of calcium in sea urchin eggs during the fertilization response. Shen SS; Buck WR Dev Biol; 1993 May; 157(1):157-69. PubMed ID: 8482408 [TBL] [Abstract][Full Text] [Related]
10. Inositol lipid hydrolysis contributes to the Ca2+ wave in the activating egg of Xenopus laevis. Larabell C; Nuccitelli R Dev Biol; 1992 Oct; 153(2):347-55. PubMed ID: 1327924 [TBL] [Abstract][Full Text] [Related]
11. Reducing PIP2 hydrolysis, Ins(1,4,5)P3 receptor availability, or calcium gradients inhibits progesterone-stimulated Xenopus oocyte maturation. Han JK; Lee SK Biochem Biophys Res Commun; 1995 Dec; 217(3):931-9. PubMed ID: 8554618 [TBL] [Abstract][Full Text] [Related]
12. Development of inositol trisphosphate-induced calcium release mechanism during maturation of hamster oocytes. Fujiwara T; Nakada K; Shirakawa H; Miyazaki S Dev Biol; 1993 Mar; 156(1):69-79. PubMed ID: 8383620 [TBL] [Abstract][Full Text] [Related]
13. Reducing inositol lipid hydrolysis, Ins(1,4,5)P3 receptor availability, or Ca2+ gradients lengthens the duration of the cell cycle in Xenopus laevis blastomeres. Han JK; Fukami K; Nuccitelli R J Cell Biol; 1992 Jan; 116(1):147-56. PubMed ID: 1309810 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal characteristics and mechanisms of intracellular Ca(2+) increases at fertilization in eggs of jellyfish (Phylum Cnidaria, Class Hydrozoa). Deguchi R; Kondoh E; Itoh J Dev Biol; 2005 Mar; 279(2):291-307. PubMed ID: 15733659 [TBL] [Abstract][Full Text] [Related]
15. Spatiotemporal dynamics of the [Ca2+]i rise induced by microinjection of sperm extract into mouse eggs: preferential induction of a Ca2+ wave from the cortex mediated by the inositol 1,4,5-trisphosphate receptor. Oda S; Deguchi R; Mohri T; Shikano T; Nakanishi S; Miyazaki S Dev Biol; 1999 May; 209(1):172-85. PubMed ID: 10208751 [TBL] [Abstract][Full Text] [Related]
16. Cortically restricted production of IP3 leads to propagation of the fertilization Ca2+ wave along the cell surface in a model of the Xenopus egg. Fall CP; Wagner JM; Loew LM; Nuccitelli R J Theor Biol; 2004 Dec; 231(4):487-96. PubMed ID: 15488526 [TBL] [Abstract][Full Text] [Related]
17. Sperm, inositol trisphosphate, and thimerosal-induced intracellular Ca2+ elevations in rabbit eggs. Fissore RA; Robl JM Dev Biol; 1993 Sep; 159(1):122-30. PubMed ID: 8365556 [TBL] [Abstract][Full Text] [Related]
18. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Miyazaki S; Shirakawa H; Nakada K; Honda Y Dev Biol; 1993 Jul; 158(1):62-78. PubMed ID: 8392472 [TBL] [Abstract][Full Text] [Related]
19. Role of two series of Ca2+ oscillations in activation of ascidian eggs. Yoshida M; Sensui N; Inoue T; Morisawa M; Mikoshiba K Dev Biol; 1998 Nov; 203(1):122-33. PubMed ID: 9806778 [TBL] [Abstract][Full Text] [Related]
20. The Ca2+ increase by the sperm factor in physiologically polyspermic newt fertilization: its signaling mechanism in egg cytoplasm and the species-specificity. Harada Y; Kawazoe M; Eto Y; Ueno S; Iwao Y Dev Biol; 2011 Mar; 351(2):266-76. PubMed ID: 21237143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]