These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 7687247)
1. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1993 Jul; 175(14):4282-9. PubMed ID: 7687247 [TBL] [Abstract][Full Text] [Related]
2. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. Fisher SH; Strauch MA; Atkinson MR; Wray LV J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456 [TBL] [Abstract][Full Text] [Related]
3. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1990 Sep; 172(9):4758-65. PubMed ID: 2118500 [TBL] [Abstract][Full Text] [Related]
4. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon. Oda M; Sugishita A; Furukawa K J Bacteriol; 1988 Jul; 170(7):3199-205. PubMed ID: 2454913 [TBL] [Abstract][Full Text] [Related]
5. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. Wray LV; Fisher SH J Bacteriol; 1994 Sep; 176(17):5466-73. PubMed ID: 8071225 [TBL] [Abstract][Full Text] [Related]
6. Role of CodY in regulation of the Bacillus subtilis hut operon. Fisher SH; Rohrer K; Ferson AE J Bacteriol; 1996 Jul; 178(13):3779-84. PubMed ID: 8682780 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis-acting regulatory region associated with catabolite repression downstream from the site of transcription. Oda M; Katagai T; Tomura D; Shoun H; Hoshino T; Furukawa K Mol Microbiol; 1992 Sep; 6(18):2573-82. PubMed ID: 1360137 [TBL] [Abstract][Full Text] [Related]
8. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. Zalieckas JM; Wray LV; Fisher SH J Bacteriol; 1999 May; 181(9):2883-8. PubMed ID: 10217782 [TBL] [Abstract][Full Text] [Related]
9. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. Wray LV; Pettengill FK; Fisher SH J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455 [TBL] [Abstract][Full Text] [Related]
10. Cloning and sequencing of a 29 kb region of the Bacillus subtilis genome containing the hut and wapA loci. Yoshida K; Sano H; Seki S; Oda M; Fujimura M; Fujita Y Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():337-43. PubMed ID: 7704263 [TBL] [Abstract][Full Text] [Related]
11. A novel mutation, of the Bacillus subtilis hut operon that relieves both catabolite repression and amino acid repression. Eda S; Hoshino T; Oda M Appl Microbiol Biotechnol; 1999 Jan; 51(1):85-90. PubMed ID: 10077824 [TBL] [Abstract][Full Text] [Related]
12. Role of the Bacillus subtilis gsiA gene in regulation of early sporulation gene expression. Mueller JP; Sonenshein AL J Bacteriol; 1992 Jul; 174(13):4374-83. PubMed ID: 1624431 [TBL] [Abstract][Full Text] [Related]
13. Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Zalieckas JM; Wray LV; Ferson AE; Fisher SH Mol Microbiol; 1998 Mar; 27(5):1031-8. PubMed ID: 9535092 [TBL] [Abstract][Full Text] [Related]
14. Histidine utilisation operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacterium Pseudomonas syringae. Kannan K; Janiyani KL; Shivaji S; Ray MK FEMS Microbiol Lett; 1998 Apr; 161(1):7-14. PubMed ID: 9561727 [TBL] [Abstract][Full Text] [Related]
15. Role of the DNA sequence downstream of the Bacillus subtilis hut promoter in regulation of the hut operon. Eda S; Hoshino T; Oda M Biosci Biotechnol Biochem; 2000 Mar; 64(3):484-91. PubMed ID: 10803944 [TBL] [Abstract][Full Text] [Related]
16. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. Sun DX; Setlow P J Bacteriol; 1991 Jun; 173(12):3831-45. PubMed ID: 1711029 [TBL] [Abstract][Full Text] [Related]
17. In vivo regulation of histidine ammonia-lyase activity from Streptomyces griseus. Kroening TA; Kendrick KE J Bacteriol; 1987 Feb; 169(2):823-9. PubMed ID: 3100505 [TBL] [Abstract][Full Text] [Related]
18. Genetic and physical maps of Klebsiella aerogenes genes for histidine utilization (hut). Boylan SA; Bender RA Mol Gen Genet; 1984; 193(1):99-103. PubMed ID: 6361501 [TBL] [Abstract][Full Text] [Related]
19. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. Wray LV; Ferson AE; Fisher SH J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005 [TBL] [Abstract][Full Text] [Related]
20. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Slack FJ; Serror P; Joyce E; Sonenshein AL Mol Microbiol; 1995 Feb; 15(4):689-702. PubMed ID: 7783641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]