These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 7687296)
21. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. Pilpel Y; Ben-Tal N; Lancet D J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897 [TBL] [Abstract][Full Text] [Related]
22. Improved identification of outer membrane beta barrel proteins using primary sequence, predicted secondary structure, and evolutionary information. Mizianty MJ; Kurgan L Proteins; 2011 Jan; 79(1):294-303. PubMed ID: 21064129 [TBL] [Abstract][Full Text] [Related]
23. Coils in the membrane core are conserved and functionally important. Kauko A; Illergård K; Elofsson A J Mol Biol; 2008 Jun; 380(1):170-80. PubMed ID: 18511074 [TBL] [Abstract][Full Text] [Related]
24. Transmembrane alpha-helices in the gap junction membrane channel: systematic search of packing models based on the pair potential function. Nunn RS; Macke TJ; Olson AJ; Yeager M Microsc Res Tech; 2001 Feb; 52(3):344-51. PubMed ID: 11180625 [TBL] [Abstract][Full Text] [Related]
26. Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima. Lupas A; Müller S; Goldie K; Engel AM; Engel A; Baumeister W J Mol Biol; 1995 Apr; 248(1):180-9. PubMed ID: 7731042 [TBL] [Abstract][Full Text] [Related]
27. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures. Wako H; Blundell TL J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744 [TBL] [Abstract][Full Text] [Related]
28. Polarized ATR-FTIR spectroscopy of the membrane-embedded domains of the particulate methane monooxygenase. Vinchurkar MS; Chen KH; Yu SS; Kuo SJ; Chiu HC; Chien SH; Chan SI Biochemistry; 2004 Oct; 43(42):13283-92. PubMed ID: 15491135 [TBL] [Abstract][Full Text] [Related]
29. The effect of nucleotide bias upon the composition and prediction of transmembrane helices. Stevens TJ; Arkin IT Protein Sci; 2000 Mar; 9(3):505-11. PubMed ID: 10752612 [TBL] [Abstract][Full Text] [Related]
30. Infrared dichroism of twisted beta-sheet barrels. The structure of E. coli outer membrane proteins. Marsh D J Mol Biol; 2000 Mar; 297(3):803-8. PubMed ID: 10731430 [TBL] [Abstract][Full Text] [Related]
31. Structural features of transmembrane helices. Hildebrand PW; Preissner R; Frömmel C FEBS Lett; 2004 Feb; 559(1-3):145-51. PubMed ID: 14960323 [TBL] [Abstract][Full Text] [Related]
32. A turn propensity scale for transmembrane helices. Monné M; Hermansson M; von Heijne G J Mol Biol; 1999 Apr; 288(1):141-5. PubMed ID: 10329132 [TBL] [Abstract][Full Text] [Related]
33. Proline-induced disruption of a transmembrane alpha-helix in its natural environment. Nilsson I; Sääf A; Whitley P; Gafvelin G; Waller C; von Heijne G J Mol Biol; 1998 Dec; 284(4):1165-75. PubMed ID: 9837734 [TBL] [Abstract][Full Text] [Related]
34. Topology prediction of Brucella abortus Omp2b and Omp2a porins after critical assessment of transmembrane beta strands prediction by several secondary structure prediction methods. Paquet JY; Vinals C; Wouters J; Letesson JJ; Depiereux E J Biomol Struct Dyn; 2000 Feb; 17(4):747-57. PubMed ID: 10698111 [TBL] [Abstract][Full Text] [Related]
35. A combined transmembrane topology and signal peptide prediction method. Käll L; Krogh A; Sonnhammer EL J Mol Biol; 2004 May; 338(5):1027-36. PubMed ID: 15111065 [TBL] [Abstract][Full Text] [Related]
36. Crystal structure of the monomeric porin OmpG. Subbarao GV; van den Berg B J Mol Biol; 2006 Jul; 360(4):750-9. PubMed ID: 16797588 [TBL] [Abstract][Full Text] [Related]
37. Formation of cytoplasmic turns between two closely spaced transmembrane helices during membrane protein integration into the ER membrane. Sääf A; Hermansson M; von Heijne G J Mol Biol; 2000 Aug; 301(1):191-7. PubMed ID: 10926501 [TBL] [Abstract][Full Text] [Related]
38. Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Jacoboni I; Martelli PL; Fariselli P; De Pinto V; Casadio R Protein Sci; 2001 Apr; 10(4):779-87. PubMed ID: 11274469 [TBL] [Abstract][Full Text] [Related]
39. A continuum theory for the prediction of lateral and rotational positioning of alpha-helices in membrane proteins: bacteriorhodopsin. Suwa M; Hirokawa T; Mitaku S Proteins; 1995 Aug; 22(4):363-77. PubMed ID: 7479710 [TBL] [Abstract][Full Text] [Related]
40. Recognition of transmembrane alpha-helical segments with environmental profiles. Efremov RG; Vergoten G Protein Eng; 1996 Mar; 9(3):253-63. PubMed ID: 8736492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]