BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 7687465)

  • 1. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state.
    Merrill AR; Palmer LR; Szabo AG
    Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the membrane topology of the closed state of the colicin E1 channel.
    Palmer LR; Merrill AR
    J Biol Chem; 1994 Feb; 269(6):4187-93. PubMed ID: 7508440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The colicin E1 insertion-competent state: detection of structural changes using fluorescence resonance energy transfer.
    Steer BA; Merrill AR
    Biochemistry; 1994 Feb; 33(5):1108-15. PubMed ID: 8110742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide: unfolding of local segments using genetically substituted tryptophan residues.
    Steer BA; Merrill AR
    Biochemistry; 1995 May; 34(21):7225-33. PubMed ID: 7766633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry.
    Vos R; Engelborghs Y; Izard J; Baty D
    Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1.
    Tory MC; Merrill AR
    J Biol Chem; 1999 Aug; 274(35):24539-49. PubMed ID: 10455117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide.
    Tory MC; Merrill AR
    Biochim Biophys Acta; 2002 Aug; 1564(2):435-48. PubMed ID: 12175927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.
    Shiver JW; Cohen FS; Merrill AR; Cramer WA
    Biochemistry; 1988 Nov; 27(22):8421-8. PubMed ID: 2468358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein.
    Zakharov SD; Lindeberg M; Cramer WA
    Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colicin E1 forms a dimer after urea-induced unfolding.
    Steer BA; DiNardo AA; Merrill AR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):631-8. PubMed ID: 10359646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies.
    Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y
    J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-inserted colicin E1 channel domain: a topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration.
    Malenbaum SE; Merrill AR; London E
    J Nat Toxins; 1998 Oct; 7(3):269-90. PubMed ID: 9783264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide.
    Steer BA; Merrill AR
    Biochemistry; 1997 Mar; 36(10):3037-46. PubMed ID: 9062135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468.
    Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ
    J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel.
    Zhang YL; Cramer WA
    Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1.
    Cleveland MV; Slatin S; Finkelstein A; Levinthal C
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3706-10. PubMed ID: 6304732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.