BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7687721)

  • 21. The individual enantiomers of cis-cromakalim possess K+ channel opening activity.
    Quast U; Villhauer EB
    Eur J Pharmacol; 1993 Apr; 245(2):165-71. PubMed ID: 8491256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim.
    Zuccarello M; Bonasso CL; Lewis AI; Sperelakis N; Rapoport RM
    Stroke; 1996 Feb; 27(2):311-6. PubMed ID: 8571429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of racemic cromakalim, BRL 38226 and levcromakalim on the membrane potential of the rat aorta and of BRL 38226 on the contractile activity of the rat aorta and portal vein.
    Bishop BE; Doggrell SA
    J Auton Pharmacol; 1994 Apr; 14(2):99-108. PubMed ID: 8051202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of the potassium channel openers KRN4884 and levcromakalim on the contraction of rat aorta induced by A23187, compared with nifedipine.
    Kawahara J; Izumi H; Okada Y; Izawa T
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Oct; 354(4):460-5. PubMed ID: 8897449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vasodilating actions of cromakalim in resting and contracting states of carotid arteries from spontaneously hypertensive rats.
    Asano M; Masuzawa-Ito K; Matsuda T
    Eur J Pharmacol; 1994 Sep; 263(1-2):121-31. PubMed ID: 7529710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of the K+ channel blocker tedisamil on 86Rb efflux induced by cromakalim, high potassium and noradrenaline, and on mechanical tension in rabbit isolated vascular smooth muscle.
    Kreye VA; Pfründer D; Theiss U
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Feb; 345(2):238-43. PubMed ID: 1570026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potassium channel-opening and vasorelaxant profiles of a novel compound YM099 in rat isolated portal vein and rabbit isolated aorta.
    Uchida W; Hirano Y; Shirai Y; Taguchi T; Masuda N; Shibasaki K; Hirano S; Matsumoto Y; Tsuzuki R; Yanagisawa I
    Arch Int Pharmacodyn Ther; 1994; 327(3):330-43. PubMed ID: 7848015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the effects of the K(+)-channel openers cromakalim and minoxidil sulphate on vascular smooth muscle.
    Wickenden AD; Grimwood S; Grant TL; Todd MH
    Br J Pharmacol; 1991 May; 103(1):1148-52. PubMed ID: 1878752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antidiabetic sulfonylureas relax isolated rabbit coronary arteries.
    Nielsen-Kudsk JE; Thirstrup S
    Eur J Pharmacol; 1991 Dec; 209(3):273-5. PubMed ID: 1797568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of rubidium on responses to potassium channel openers in rat isolated aorta.
    Greenwood IA; Weston AH
    Br J Pharmacol; 1993 Aug; 109(4):925-32. PubMed ID: 8401946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the relaxing effects of cicletanine and cromakalim on vascular smooth muscle.
    Deitmer P; Golenhofen K; Noack T
    J Cardiovasc Pharmacol; 1992 Jul; 20(1):35-42. PubMed ID: 1383629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of the contractile response of rabbit aorta produced by cromakalim in calcium-free solution.
    Duty S; Weston AH
    Br J Pharmacol; 1992 Dec; 107(4):1198-204. PubMed ID: 1467840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Some degree of overlap exists between the K(+)-channels opened by cromakalim and those opened by minoxidil sulphate in rat isolated aorta.
    Bray K; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Sep; 344(3):351-9. PubMed ID: 1961260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of pinacidil and cromakalim on vascular relaxation and sympathetic neurotransmission.
    Cai B; Hao Q; Greenberg SS; deBoisblanc B; Gillott D; Goharderakhshan R; Summer WR; Hyman A; Lippton H
    Can J Physiol Pharmacol; 1994 Jul; 72(7):801-10. PubMed ID: 7828089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Levcromakalim-induced modulation of membrane potassium currents, intracellular calcium and mechanical activity in rat mesenteric artery.
    Criddle DN; Greenwood IA; Weston AH
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Apr; 349(4):422-30. PubMed ID: 8058114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relaxation by cromakalim and pinacidil of isolated smooth muscle cells from canine coronary artery-multiple sites of action.
    Rhim BY; Hong KW
    Arch Int Pharmacodyn Ther; 1994; 328(1):67-81. PubMed ID: 7893192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vasodilator action of cromakalim on human mesenteric artery.
    McDonald A; MacDonald E; Wadsworth RM; Scott PJ
    Eur J Pharmacol; 1993 Aug; 240(2-3):303-5. PubMed ID: 8243545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that acetylcholine-mediated hyperpolarization of the rat small mesenteric artery does not involve the K+ channel opened by cromakalim.
    McPherson GA; Angus JA
    Br J Pharmacol; 1991 May; 103(1):1184-90. PubMed ID: 1908733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of rabbit aortic Ca(2+)-activated K+ channels by pinacidil, cromakalim, and glibenclamide.
    Gelband GH; McCullough JR
    Am J Physiol; 1993 May; 264(5 Pt 1):C1119-27. PubMed ID: 8498475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism of action of endothelin-1 as compared with other agonists in vascular smooth muscle.
    Wallnöfer A; Weir S; Rüegg U; Cauvin C
    J Cardiovasc Pharmacol; 1989; 13 Suppl 5():S23-31; discussion S45. PubMed ID: 2473323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.