These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Hwang TC; Nagel G; Nairn AC; Gadsby DC Proc Natl Acad Sci U S A; 1994 May; 91(11):4698-702. PubMed ID: 7515176 [TBL] [Abstract][Full Text] [Related]
4. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
5. ATP and AMP mutually influence their interaction with the ATP-binding cassette (ABC) adenylate kinase cystic fibrosis transmembrane conductance regulator (CFTR) at separate binding sites. Randak CO; Dong Q; Ver Heul AR; Elcock AH; Welsh MJ J Biol Chem; 2013 Sep; 288(38):27692-27701. PubMed ID: 23921386 [TBL] [Abstract][Full Text] [Related]
6. 5'-Adenylylimidodiphosphate does not activate CFTR chloride channels in cell-free patches of membrane. Carson MR; Welsh MJ Am J Physiol; 1993 Jul; 265(1 Pt 1):L27-32. PubMed ID: 7687826 [TBL] [Abstract][Full Text] [Related]
7. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
8. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. Carson MR; Travis SM; Welsh MJ J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246 [TBL] [Abstract][Full Text] [Related]
9. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover. Aleksandrov L; Aleksandrov AA; Chang XB; Riordan JR J Biol Chem; 2002 May; 277(18):15419-25. PubMed ID: 11861646 [TBL] [Abstract][Full Text] [Related]
10. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. Okeyo G; Wang W; Wei S; Kirk KL J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589 [TBL] [Abstract][Full Text] [Related]
12. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. Berger HA; Anderson MP; Gregory RJ; Thompson S; Howard PW; Maurer RA; Mulligan R; Smith AE; Welsh MJ J Clin Invest; 1991 Oct; 88(4):1422-31. PubMed ID: 1717515 [TBL] [Abstract][Full Text] [Related]
13. Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. Weinreich F; Riordan JR; Nagel G J Gen Physiol; 1999 Jul; 114(1):55-70. PubMed ID: 10398692 [TBL] [Abstract][Full Text] [Related]
15. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. Reisin IL; Prat AG; Abraham EH; Amara JF; Gregory RJ; Ausiello DA; Cantiello HF J Biol Chem; 1994 Aug; 269(32):20584-91. PubMed ID: 7519611 [TBL] [Abstract][Full Text] [Related]
16. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Anderson MP; Welsh MJ Science; 1992 Sep; 257(5077):1701-4. PubMed ID: 1382316 [TBL] [Abstract][Full Text] [Related]
17. External ATP and its analogs activate the cystic fibrosis transmembrane conductance regulator by a cyclic AMP-independent mechanism. Cantiello HF; Prat AG; Reisin IL; Ercole LB; Abraham EH; Amara JF; Gregory RJ; Ausiello DA J Biol Chem; 1994 Apr; 269(15):11224-32. PubMed ID: 7512560 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. Berger HA; Travis SM; Welsh MJ J Biol Chem; 1993 Jan; 268(3):2037-47. PubMed ID: 7678414 [TBL] [Abstract][Full Text] [Related]
19. Interaction of tolbutamide and cytosolic nucleotides in controlling the ATP-sensitive K+ channel in mouse beta-cells. Schwanstecher C; Dickel C; Panten U Br J Pharmacol; 1994 Jan; 111(1):302-10. PubMed ID: 8012711 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of recombinant cystic fibrosis transmembrane conductance regulator from Chinese hamster ovary and insect cells. O'Riordan CR; Erickson A; Bear C; Li C; Manavalan P; Wang KX; Marshall J; Scheule RK; McPherson JM; Cheng SH J Biol Chem; 1995 Jul; 270(28):17033-43. PubMed ID: 7542655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]