These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach. Feiters MC Met Ions Biol Syst; 2001; 38():461-655. PubMed ID: 11219019 [No Abstract] [Full Text] [Related]
3. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters. Lin YW Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341 [TBL] [Abstract][Full Text] [Related]
4. Electronic structure contributions to function in bioinorganic chemistry. Solomon EI; Lowery MD Science; 1993 Mar; 259(5101):1575-81. PubMed ID: 8384374 [TBL] [Abstract][Full Text] [Related]
5. Structural principles for computational and de novo design of 4Fe-4S metalloproteins. Nanda V; Senn S; Pike DH; Rodriguez-Granillo A; Hansen WA; Khare SD; Noy D Biochim Biophys Acta; 2016 May; 1857(5):531-538. PubMed ID: 26449207 [TBL] [Abstract][Full Text] [Related]
6. Novel metal sites in protein structures. Volbeda A; Fontecilla-Camps JC; Frey M Curr Opin Struct Biol; 1996 Dec; 6(6):804-12. PubMed ID: 8994881 [TBL] [Abstract][Full Text] [Related]
7. Design Strategies for Redox Active Metalloenzymes: Applications in Hydrogen Production. Alcala-Torano R; Sommer DJ; Bahrami Dizicheh Z; Ghirlanda G Methods Enzymol; 2016; 580():389-416. PubMed ID: 27586342 [TBL] [Abstract][Full Text] [Related]
8. Emergence of metal selectivity and promiscuity in metalloenzymes. Eom H; Song WJ J Biol Inorg Chem; 2019 Jun; 24(4):517-531. PubMed ID: 31115763 [TBL] [Abstract][Full Text] [Related]
9. Functional non-heme iron metalloenzyme model systems. Caradonna JP; Stassinopoulos A Adv Inorg Biochem; 1994; 9():245-315. PubMed ID: 8140949 [No Abstract] [Full Text] [Related]
12. Great metalloclusters in enzymology. Rees DC Annu Rev Biochem; 2002; 71():221-46. PubMed ID: 12045096 [TBL] [Abstract][Full Text] [Related]
13. Modulation by nitric oxide of metalloprotein regulatory activities. Drapier JC; Bouton C Bioessays; 1996 Jul; 18(7):549-56. PubMed ID: 8757934 [TBL] [Abstract][Full Text] [Related]
14. Editorial for the virtual issue on models of metalloenzymes. Tolman WB Inorg Chem; 2013 Jul; 52(13):7307-10. PubMed ID: 23819601 [No Abstract] [Full Text] [Related]
15. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. Ringenberg MR; Ward TR Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692 [TBL] [Abstract][Full Text] [Related]
16. Iron-sulphur clusters: agents of electron transfer and storage, and direct participants in enzymic reactions. Tenth Keilin memorial lecture. Beinert H Biochem Soc Trans; 1986 Jun; 14(3):527-33. PubMed ID: 3732590 [No Abstract] [Full Text] [Related]
17. Analysis of differences in oxygen sensitivity of Fe-S clusters. Bruska MK; Stiebritz MT; Reiher M Dalton Trans; 2013 Jun; 42(24):8729-35. PubMed ID: 23632881 [TBL] [Abstract][Full Text] [Related]
18. Synthetic modeling chemistry of iron-sulfur clusters in nitric oxide signaling. Fitzpatrick J; Kim E Acc Chem Res; 2015 Aug; 48(8):2453-61. PubMed ID: 26197209 [TBL] [Abstract][Full Text] [Related]
19. Direct and indirect electrochemical investigations of metalloenzymes. Hill HA; Hunt NI Methods Enzymol; 1993; 227():501-22. PubMed ID: 8255235 [No Abstract] [Full Text] [Related]
20. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NO(x) redox chemistry. Wasser IM; de Vries S; Moënne-Loccoz P; Schröder I; Karlin KD Chem Rev; 2002 Apr; 102(4):1201-34. PubMed ID: 11942794 [No Abstract] [Full Text] [Related] [Next] [New Search]