These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 7688426)
1. The conserved terminal guanosine of a group I intron can help prevent reopening of the ligated exons. Suh E; Waring RB J Mol Biol; 1993 Jul; 232(2):375-85. PubMed ID: 7688426 [TBL] [Abstract][Full Text] [Related]
2. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization. Strobel SA; Cech TR Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575 [TBL] [Abstract][Full Text] [Related]
3. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans. Sargueil B; Tanner NK J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic activity of the conserved core of a group I self-splicing intron. Szostak JW Nature; 1986 Jul 3-9; 322(6074):83-6. PubMed ID: 3014350 [TBL] [Abstract][Full Text] [Related]
5. The guanosine binding site of the Tetrahymena ribozyme. Michel F; Hanna M; Green R; Bartel DP; Szostak JW Nature; 1989 Nov; 342(6248):391-5. PubMed ID: 2685606 [TBL] [Abstract][Full Text] [Related]
6. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. Strauss-Soukup JK; Strobel SA J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738 [TBL] [Abstract][Full Text] [Related]
7. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron. Emerick VL; Pan J; Woodson SA Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Mei R; Herschlag D Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA. Geese WJ; Waring RB J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164 [TBL] [Abstract][Full Text] [Related]
10. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction. Oe Y; Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885 [TBL] [Abstract][Full Text] [Related]
11. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Golden BL; Cech TR Biochemistry; 1996 Mar; 35(12):3754-63. PubMed ID: 8619996 [TBL] [Abstract][Full Text] [Related]
12. Requirements of a group I intron for reactions at the 3' splice site. van der Horst G; Inoue T J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366 [TBL] [Abstract][Full Text] [Related]
13. Determinants of the 3' splice site for self-splicing of the Tetrahymena pre-rRNA. Price JV; Cech TR Genes Dev; 1988 Nov; 2(11):1439-47. PubMed ID: 3209068 [TBL] [Abstract][Full Text] [Related]
14. 5' exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5' splice site in the 3' exon. Price JV; Engberg J; Cech TR J Mol Biol; 1987 Jul; 196(1):49-60. PubMed ID: 2443717 [TBL] [Abstract][Full Text] [Related]
15. Coordination of two sequential ester-transfer reactions: exogenous guanosine binding promotes the subsequent omegaG binding to a group I intron. Bao P; Wu QJ; Yin P; Jiang Y; Wang X; Xie MH; Sun T; Huang L; Mo DD; Zhang Y Nucleic Acids Res; 2008 Dec; 36(21):6934-43. PubMed ID: 18978026 [TBL] [Abstract][Full Text] [Related]
16. Self-splicing of Tetrahymena rRNA can proceed with phosphorothioate substitution at the splice sites. Deeney CM; Eperon IC; Potter BV Nucleic Acids Symp Ser; 1987; (18):277-80. PubMed ID: 3697141 [TBL] [Abstract][Full Text] [Related]
17. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. Been MD; Perrotta AT Science; 1991 Apr; 252(5004):434-7. PubMed ID: 2017681 [TBL] [Abstract][Full Text] [Related]
18. The conserved U.G pair in the 5' splice site duplex of a group I intron is required in the first but not the second step of self-splicing. Barfod ET; Cech TR Mol Cell Biol; 1989 Sep; 9(9):3657-66. PubMed ID: 2779562 [TBL] [Abstract][Full Text] [Related]
19. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. Takeshima Y; Nishio H; Sakamoto H; Nakamura H; Matsuo M J Clin Invest; 1995 Feb; 95(2):515-20. PubMed ID: 7860733 [TBL] [Abstract][Full Text] [Related]
20. An RNA-amino acid complex and the origin of the genetic code. Yarus M New Biol; 1991 Feb; 3(2):183-9. PubMed ID: 2065012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]