These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7688507)
1. Characterization of HIV-1 reverse transcriptase with antibodies indicates conformational differences between the RNAse H domains of p 66 and p 15. Szilvay AM; Nornes S; Kannapiran A; Haukanes BI; Endresen C; Helland DE Arch Virol; 1993; 131(3-4):393-403. PubMed ID: 7688507 [TBL] [Abstract][Full Text] [Related]
2. Epitope mapping of HIV-1 reverse transcriptase with monoclonal antibodies that inhibit polymerase and RNase H activities. Szilvay AM; Nornes S; Haugan IR; Olsen L; Prasad VR; Endresen C; Goff SP; Helland DE J Acquir Immune Defic Syndr (1988); 1992; 5(7):647-57. PubMed ID: 1377241 [TBL] [Abstract][Full Text] [Related]
3. Monoclonal antibodies define linear and conformational epitopes of HIV-1 pol gene products. Ferns RB; Partridge JC; Tisdale M; Hunt N; Tedder RS AIDS Res Hum Retroviruses; 1991 Mar; 7(3):307-13. PubMed ID: 1712217 [TBL] [Abstract][Full Text] [Related]
4. Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase. Stahl SJ; Kaufman JD; Vikić-Topić S; Crouch RJ; Wingfield PT Protein Eng; 1994 Sep; 7(9):1103-8. PubMed ID: 7530360 [TBL] [Abstract][Full Text] [Related]
5. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities. Wilhelm M; Boutabout M; Wilhelm FX Biochem J; 2000 Jun; 348 Pt 2(Pt 2):337-42. PubMed ID: 10816427 [TBL] [Abstract][Full Text] [Related]
6. Contributions of DNA polymerase subdomains to the RNase H activity of human immunodeficiency virus type 1 reverse transcriptase. Smith JS; Gritsman K; Roth MJ J Virol; 1994 Sep; 68(9):5721-9. PubMed ID: 7520094 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain. Smith JS; Roth MJ J Virol; 1993 Jul; 67(7):4037-49. PubMed ID: 7685407 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of the RNase H domain of HIV-1 reverse transcriptase expressed in recombinant Escherichia coli. Becerra SP; Clore GM; Gronenborn AM; Karlström AR; Stahl SJ; Wilson SH; Wingfield PT FEBS Lett; 1990 Sep; 270(1-2):76-80. PubMed ID: 1699794 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of monoclonal antibodies raised against the reverse transcriptase of human immunodeficiency virus type 2 and cross-reactivity with that of type 1. Snowden W; Coughlan N; Tisdale M; Stammers DK J Acquir Immune Defic Syndr (1988); 1993 Nov; 6(11):1187-93. PubMed ID: 7693912 [TBL] [Abstract][Full Text] [Related]
11. Generation and characterization of murine monoclonal antibodies reactive against N-terminal and other regions of HIV-1 reverse transcriptase. Li X; Amandoron E; Wainberg MA; Parniak MA J Med Virol; 1993 Mar; 39(3):251-9. PubMed ID: 7682257 [TBL] [Abstract][Full Text] [Related]
12. Folding the ribonuclease H domain of Moloney murine leukemia virus reverse transcriptase requires metal binding or a short N-terminal extension. Goedken ER; Marqusee S Proteins; 1998 Oct; 33(1):135-43. PubMed ID: 9741851 [TBL] [Abstract][Full Text] [Related]
13. The nature of the N-terminal amino acid residue of HIV-1 RNase H is critical for the stability of reverse transcriptase in viral particles. Boso G; Örvell C; Somia NV J Virol; 2015 Jan; 89(2):1286-97. PubMed ID: 25392207 [TBL] [Abstract][Full Text] [Related]
14. Mutagenesis of cysteine 280 of the reverse transcriptase of human immunodeficiency virus type-1: the effects on the ribonuclease H activity. Sevilya Z; Loya S; Duvshani A; Adir N; Hizi A J Mol Biol; 2003 Mar; 327(1):19-30. PubMed ID: 12614605 [TBL] [Abstract][Full Text] [Related]
15. A recombinant ribonuclease H domain of HIV-1 reverse transcriptase that is enzymatically active. Evans DB; Brawn K; Deibel MR; Tarpley WG; Sharma SK J Biol Chem; 1991 Nov; 266(31):20583-5. PubMed ID: 1718968 [TBL] [Abstract][Full Text] [Related]
16. Two highly antigenic sites in the human immunodeficiency virus type 1 reverse transcriptase. Björling E; Boucher CA; Samuelsson A; Wolfs TF; Utter G; Norrby E; Chiodi F J Clin Microbiol; 1993 Mar; 31(3):588-92. PubMed ID: 7681439 [TBL] [Abstract][Full Text] [Related]
17. Proteolytic release and crystallization of the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase. Hostomska Z; Matthews DA; Davies JF; Nodes BR; Hostomsky Z J Biol Chem; 1991 Aug; 266(22):14697-702. PubMed ID: 1713588 [TBL] [Abstract][Full Text] [Related]
18. The p15 carboxyl-terminal proteolysis product of the human immunodeficiency virus type 1 reverse transcriptase p66 has DNA polymerase activity. Hafkemeyer P; Ferrari E; Brecher J; Hübscher U Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5262-66. PubMed ID: 1711222 [TBL] [Abstract][Full Text] [Related]
19. Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. Gopalakrishnan V; Peliska JA; Benkovic SJ Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10763-7. PubMed ID: 1279694 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional structural resemblance between the ribonuclease H and connection domains of HIV reverse transcriptase and the ATPase fold revealed using graph theoretical techniques. Artymiuk PJ; Grindley HM; Kumar K; Rice DW; Willett P FEBS Lett; 1993 Jun; 324(1):15-21. PubMed ID: 7684987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]