BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7688564)

  • 1. In vitro analysis of translational rate and accuracy with an unmodified tRNA.
    Harrington KM; Nazarenko IA; Dix DB; Thompson RC; Uhlenbeck OC
    Biochemistry; 1993 Aug; 32(30):7617-22. PubMed ID: 7688564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA.
    Nissen P; Thirup S; Kjeldgaard M; Nyborg J
    Structure; 1999 Feb; 7(2):143-56. PubMed ID: 10368282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu.
    Hunter SE; Spremulli LL
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many of the conserved nucleotides of tRNA(Phe) are not essential for ternary complex formation and peptide elongation.
    Nazarenko IA; Harrington KM; Uhlenbeck OC
    EMBO J; 1994 May; 13(10):2464-71. PubMed ID: 8194535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining a smaller RNA substrate for elongation factor Tu.
    Nazarenko IA; Uhlenbeck OC
    Biochemistry; 1995 Feb; 34(8):2545-52. PubMed ID: 7532998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ms2i6A deficiency enhances proofreading in translation.
    Díaz I; Ehrenberg M
    J Mol Biol; 1991 Dec; 222(4):1161-71. PubMed ID: 1762149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does ppGpp affect translational accuracy in the stringent response?
    Rojas AM; Ehrenberg M
    Biochimie; 1991 May; 73(5):599-605. PubMed ID: 1722424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ternary complex between elongation factor Tu.GTP and Phe-tRNA(Phe).
    Förster C; Limmer S; Ribeiro S; Hilgenfeld R; Sprinzl M
    Biochimie; 1993; 75(12):1159-66. PubMed ID: 8199251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu.
    Rodnina MV; Fricke R; Wintermeyer W
    Biochemistry; 1994 Oct; 33(40):12267-75. PubMed ID: 7918447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA.
    Barends S; Karzai AW; Sauer RT; Wower J; Kraal B
    J Mol Biol; 2001 Nov; 314(1):9-21. PubMed ID: 11724528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNA-guanine transglycosylase from Escherichia coli: recognition of noncognate-cognate chimeric tRNA and discovery of a novel recognition site within the TpsiC arm of tRNA(Phe).
    Kung FL; Nonekowski S; Garcia GA
    RNA; 2000 Feb; 6(2):233-44. PubMed ID: 10688362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of thermodynamically relevant interactions between EF-Tu and backbone elements of tRNA.
    Pleiss JA; Uhlenbeck OC
    J Mol Biol; 2001 May; 308(5):895-905. PubMed ID: 11352580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational change in the 16S rRNA in the Escherichia coli 70S ribosome induced by P/P- and P/E-site tRNAPhe binding.
    Noah JW; Shapkina TG; Nanda K; Huggins W; Wollenzien P
    Biochemistry; 2003 Dec; 42(49):14386-96. PubMed ID: 14661949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu.
    Liu JC; Liu M; Horowitz J
    RNA; 1998 Jun; 4(6):639-46. PubMed ID: 9622123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.
    Pape T; Wintermeyer W; Rodnina M
    EMBO J; 1999 Jul; 18(13):3800-7. PubMed ID: 10393195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.