These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 7688598)
41. Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Lehtinen J; Nuutila J; Lilius EM Cytometry A; 2004 Aug; 60(2):165-72. PubMed ID: 15290717 [TBL] [Abstract][Full Text] [Related]
42. Detection of bromodeoxyuridine incorporation by alteration of the fluorescence emission from nucleic acid binding dyes using only an argon ion laser. Frey T Cytometry; 1994 Dec; 17(4):310-8. PubMed ID: 7875038 [TBL] [Abstract][Full Text] [Related]
43. Flow cytometric localization within the cell cycle and isolation of viable cells following exposure to cytotoxic agents. Crissman HA; Wilder ME; Tobey RA Cancer Res; 1988 Oct; 48(20):5742-6. PubMed ID: 2458829 [TBL] [Abstract][Full Text] [Related]
44. Growth dynamics of mammalian cells monitored with automated cell cycle staining and flow cytometry. Sitton G; Srienc F Cytometry A; 2008 Jun; 73(6):538-45. PubMed ID: 18431799 [TBL] [Abstract][Full Text] [Related]
45. In vitro micronucleus assay for the analysis of total particulate matter in cigarette smoke: comparison of flow cytometry and laser scanning cytometry with microscopy. Yao J; Gao Q; Mi Q; Li X; Miao M; Cheng P; Luo Y Mutat Res; 2013 Aug; 755(2):120-5. PubMed ID: 23770001 [TBL] [Abstract][Full Text] [Related]
46. Fixation-associated quantitative variations of DNA fluorescence observed in flow cytometric analysis of hemopoietic cells from adult diploid frogs. Holtfreter HB; Cohen N Cytometry; 1990; 11(6):676-85. PubMed ID: 1696536 [TBL] [Abstract][Full Text] [Related]
47. Flow cytometric analysis of chromosomes and cells using a modified BrdU-Hoechst method. Severin E; Ohnemus B Histochemistry; 1982; 76(1):113-21. PubMed ID: 6184345 [TBL] [Abstract][Full Text] [Related]
48. Nuclease-induced DNA structural changes assessed by flow cytometry with the intercalating dye propidium iodide. Prosperi E; Giangarè MC; Bottiroli G Cytometry; 1991; 12(4):323-9. PubMed ID: 2065557 [TBL] [Abstract][Full Text] [Related]
49. Fluorescence lifetime-based discrimination and quantification of cellular DNA and RNA with phase-sensitive flow cytometry. Cui HH; Valdez JG; Steinkamp JA; Crissman HA Cytometry A; 2003 Mar; 52(1):46-55. PubMed ID: 12596251 [TBL] [Abstract][Full Text] [Related]
50. Measuring the DNA Content of Cells in Apoptosis and at Different Cell-Cycle Stages by Propidium Iodide Staining and Flow Cytometry. Crowley LC; Chojnowski G; Waterhouse NJ Cold Spring Harb Protoc; 2016 Oct; 2016(10):. PubMed ID: 27698234 [TBL] [Abstract][Full Text] [Related]
51. Flow microfluorometric analysis of cellular DNA: Critical comparison of mithramycin and propidium iodide. Hamilton VT; Habbersett MC; Herman CJ J Histochem Cytochem; 1980 Oct; 28(10):1125-8. PubMed ID: 6448270 [TBL] [Abstract][Full Text] [Related]
52. Functional cell-cycle chromatin conformation changes in the presence of DNA damage result into chromatid breaks: a new insight in the formation of radiation-induced chromosomal aberrations based on the direct observation of interphase chromatin. Pantelias GE; Terzoudi GI Mutat Res; 2010 Aug; 701(1):27-37. PubMed ID: 20398788 [TBL] [Abstract][Full Text] [Related]
53. Dual excitation multi- fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. Mazzini G; Ferrari C; Erba E Eur J Histochem; 2003; 47(4):289-98. PubMed ID: 14706924 [TBL] [Abstract][Full Text] [Related]
54. Development of a mechanism-based, DNA staining protocol using SYTOX orange nucleic acid stain and DNA fragment sizing flow cytometry. Yan X; Habbersett RC; Cordek JM; Nolan JP; Yoshida TM; Jett JH; Marrone BL Anal Biochem; 2000 Nov; 286(1):138-48. PubMed ID: 11038284 [TBL] [Abstract][Full Text] [Related]
55. DRAQ5-based DNA content analysis of hematolymphoid cell subpopulations discriminated by surface antigens and light scatter properties. Yuan CM; Douglas-Nikitin VK; Ahrens KP; Luchetta GR; Braylan RC; Yang L Cytometry B Clin Cytom; 2004 Mar; 58(1):47-52. PubMed ID: 14994375 [TBL] [Abstract][Full Text] [Related]
56. Chromatin condensation and sensitivity of DNA in situ to denaturation during cell cycle and apoptosis--a confocal microscopy study. Dobrucki J; Darzynkiewicz Z Micron; 2001 Oct; 32(7):645-52. PubMed ID: 11334733 [TBL] [Abstract][Full Text] [Related]
57. DNA stainability in aneuploid breast tumors: comparison of four DNA fluorochromes differing in binding properties. Myc A; Traganos F; Lara J; Melamed MR; Darzynkiewicz Z Cytometry; 1992; 13(4):389-94. PubMed ID: 1326430 [TBL] [Abstract][Full Text] [Related]
58. Fluorescence-activated cell sorting analysis of the induction and expression of acute thermal tolerance within the cell cycle. Rice GC; Gray JW; Dean PN; Dewey WC Cancer Res; 1984 Jun; 44(6):2368-76. PubMed ID: 6722776 [TBL] [Abstract][Full Text] [Related]
59. The analysis and interpretation of DNA distributions measured by flow cytometry. Dean PN; Gray JW; Dolbeare FA Cytometry; 1982 Nov; 3(3):188-95. PubMed ID: 6184208 [TBL] [Abstract][Full Text] [Related]
60. Optical studies of the interaction of 33258 Hoechst with DNA, chromatin, and metaphase chromosomes. Latt SA; Wohlleb JC Chromosoma; 1975 Nov; 52(4):297-316. PubMed ID: 1192901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]