BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 7688890)

  • 21. HCO3- transport in basolateral membrane vesicles isolated from rat renal cortex.
    Grassl SM; Holohan PD; Ross CR
    J Biol Chem; 1987 Feb; 262(6):2682-7. PubMed ID: 3029092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton/solute cotransport in rat kidney brush-border membrane vesicles: relative importance to both D-glucose and peptide transport.
    Vayro S; Simmons NL
    Biochim Biophys Acta; 1996 Feb; 1279(1):111-7. PubMed ID: 8624355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of uphill chloride transport of the mouse lacrimal acinar cells: studies with Cl- -sensitive microelectrode.
    Ozawa T; Saito Y; Nishiyama A
    Pflugers Arch; 1988 Oct; 412(5):509-15. PubMed ID: 3194172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of Cl-/OH- exchange by parachloromercuribenzoic acid in rabbit renal brush-border membranes.
    Karniski LP
    J Membr Biol; 1989 Nov; 112(1):59-66. PubMed ID: 2593140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of 4,4'-di-isothiocyano-2,2'-stilbene disulphonate on iodide uptake by primary cultures of turtle thyroid follicular cells.
    Chow SY; Yen-Chow YC; White HS; Woodbury DM
    J Endocrinol; 1987 Jun; 113(3):403-12. PubMed ID: 2442278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of cations on pH gradient-stimulated sulfate transport in rabbit ileal brush-border membrane vesicles.
    Schron CM; Knickelbein RG; Aronson PS; Della Puca J; Dobbins JW
    Am J Physiol; 1985 Nov; 249(5 Pt 1):G614-21. PubMed ID: 4061649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.
    Tiruppathi C; Balkovetz DF; Ganapathy V; Miyamoto Y; Leibach FH
    Biochem J; 1988 Nov; 256(1):219-23. PubMed ID: 2851979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of the effects of anthranilic and (indanyloxy) acetic acid derivatives on chloride transport in membrane vesicles.
    Pope AJ; Richardson SK; Ife RJ; Keeling DJ
    Biochim Biophys Acta; 1991 Aug; 1067(1):51-63. PubMed ID: 1651113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS.
    Bästlein C; Burckhardt G
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sensitive technique for the determination of anion exchange activities in brush-border membrane vesicles. Evidence for two exchangers with different affinities for HCO3- and SITS in rat intestinal epithelium.
    Vaandrager AB; De Jonge HR
    Biochim Biophys Acta; 1988 Apr; 939(2):305-14. PubMed ID: 3355819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chloride conductance and sodium-dependent glucose transport in rat and human enterocytes.
    Beesley AH; Hardcastle J; Hardcastle PT; Taylor CJ
    Gastroenterology; 1997 Apr; 112(4):1213-20. PubMed ID: 9098005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sodium-dependent ion cotransport in steady-state Ehrlich ascites tumor cells.
    Levinson C
    J Membr Biol; 1985; 87(2):121-30. PubMed ID: 2416928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. D(-)3-hydroxybutyrate cotransport with Na in rat renal brush border membrane vesicles.
    Barac-Nieto M
    Pflugers Arch; 1987 Apr; 408(4):321-7. PubMed ID: 3588250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Na+ and K+ on Cl- distribution in guinea-pig vas deferens smooth muscle: evidence for Na+, K+, Cl- co-transport.
    Aickin CC; Brading AF
    J Physiol; 1990 Feb; 421():13-32. PubMed ID: 1693397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cl-HCO3 exchange and anion conductance in rat duodenal apical membrane vesicles.
    Brown CD; Dunk CR; Turnberg LA
    Am J Physiol; 1989 Oct; 257(4 Pt 1):G661-7. PubMed ID: 2801947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voltage-driven p-aminohippurate, chloride, and urate transport in porcine renal brush-border membrane vesicles.
    Krick W; Wolff NA; Burckhardt G
    Pflugers Arch; 2000 Nov; 441(1):125-32. PubMed ID: 11205051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular pH regulation in fresh and cultured bovine corneal endothelium. II. Na+:HCO3- cotransport and Cl-/HCO3- exchange.
    Bonanno JA; Giasson C
    Invest Ophthalmol Vis Sci; 1992 Oct; 33(11):3068-79. PubMed ID: 1399410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Renal brush-border chloride transport mechanisms characterized using a fluorescent indicator.
    Chen PY; Illsley NP; Verkman AS
    Am J Physiol; 1988 Jan; 254(1 Pt 2):F114-20. PubMed ID: 3337241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.