These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 7689008)
1. Analysis of CFTR transcripts in nasal epithelial cells and lymphoblasts of a cystic fibrosis patient with 621 + 1G-->T and 711 + 1G-->T mutations. Zielenski J; Bozon D; Markiewicz D; Aubin G; Simard F; Rommens JM; Tsui LC Hum Mol Genet; 1993 Jun; 2(6):683-7. PubMed ID: 7689008 [TBL] [Abstract][Full Text] [Related]
2. Abnormal mRNA splicing resulting from three different mutations in the CFTR gene. Hull J; Shackleton S; Harris A Hum Mol Genet; 1993 Jun; 2(6):689-92. PubMed ID: 7689009 [TBL] [Abstract][Full Text] [Related]
3. Quantitative expression patterns of multidrug-resistance P-glycoprotein (MDR1) and differentially spliced cystic-fibrosis transmembrane-conductance regulator mRNA transcripts in human epithelia. Bremer S; Hoof T; Wilke M; Busche R; Scholte B; Riordan JR; Maass G; Tümmler B Eur J Biochem; 1992 May; 206(1):137-49. PubMed ID: 1375156 [TBL] [Abstract][Full Text] [Related]
4. Analysis of mutations and alternative splicing patterns in the CFTR gene using mRNA derived from nasal epithelial cells. Hull J; Shackleton S; Harris A Hum Mol Genet; 1994 Jul; 3(7):1141-6. PubMed ID: 7526925 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an intron 12 splice donor mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Strong TV; Smit LS; Nasr S; Wood DL; Cole JL; Iannuzzi MC; Stern RC; Collins FS Hum Mutat; 1992; 1(5):380-7. PubMed ID: 1284540 [TBL] [Abstract][Full Text] [Related]
6. Transcript analysis of CFTR nonsense mutations in lymphocytes and nasal epithelial cells from cystic fibrosis patients. Will K; Dörk T; Stuhrmann M; von der Hardt H; Ellemunter H; Tümmler B; Schmidtke J Hum Mutat; 1995; 5(3):210-20. PubMed ID: 7541274 [TBL] [Abstract][Full Text] [Related]
8. A novel exon in the cystic fibrosis transmembrane conductance regulator gene activated by the nonsense mutation E92X in airway epithelial cells of patients with cystic fibrosis. Will K; Dörk T; Stuhrmann M; Meitinger T; Bertele-Harms R; Tümmler B; Schmidtke J J Clin Invest; 1994 Apr; 93(4):1852-9. PubMed ID: 7512993 [TBL] [Abstract][Full Text] [Related]
9. Qualitative and quantitative analysis of mRNA associated with four putative splicing mutations (621+3A-->G, 2751+2T-->A, 296+1G-->C, 1717-9T-->C-D565G) and one nonsense mutation (E822X) in the CFTR gene. Tzetis M; Efthymiadou A; Doudounakis S; Kanavakis E Hum Genet; 2001 Dec; 109(6):592-601. PubMed ID: 11810271 [TBL] [Abstract][Full Text] [Related]
10. Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. Chu CS; Trapnell BC; Curristin SM; Cutting GR; Crystal RG J Clin Invest; 1992 Sep; 90(3):785-90. PubMed ID: 1381723 [TBL] [Abstract][Full Text] [Related]
12. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis. Trapnell BC; Chu CS; Paakko PK; Banks TC; Yoshimura K; Ferrans VJ; Chernick MS; Crystal RG Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6565-9. PubMed ID: 1713683 [TBL] [Abstract][Full Text] [Related]
13. Omission of exon 12 in cystic fibrosis transmembrane conductance regulator (CFTR) gene transcripts. Slomski R; Schloesser M; Berg LP; Wagner M; Kakkar VV; Cooper DN; Reiss J Hum Genet; 1992 Aug; 89(6):615-9. PubMed ID: 1380942 [TBL] [Abstract][Full Text] [Related]
14. Alternative splicing in the first nucleotide binding fold of CFTR. Will K; Stuhrmann M; Dean M; Schmidtke J Hum Mol Genet; 1993 Mar; 2(3):231-5. PubMed ID: 7684642 [TBL] [Abstract][Full Text] [Related]
15. Detection of a large heterozygous deletion and a splicing defect in the CFTR transcripts from nasal swab of a Japanese case of cystic fibrosis. Nakakuki M; Fujiki K; Yamamoto A; Ko SB; Yi L; Ishiguro M; Yamaguchi M; Kondo S; Maruyama S; Yanagimoto K; Naruse S; Ishiguro H J Hum Genet; 2012 Jul; 57(7):427-33. PubMed ID: 22572733 [TBL] [Abstract][Full Text] [Related]
16. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. Highsmith WE; Burch LH; Zhou Z; Olsen JC; Boat TE; Spock A; Gorvoy JD; Quittel L; Friedman KJ; Silverman LM N Engl J Med; 1994 Oct; 331(15):974-80. PubMed ID: 7521937 [TBL] [Abstract][Full Text] [Related]
17. Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Zielenski J; Bozon D; Kerem B; Markiewicz D; Durie P; Rommens JM; Tsui LC Genomics; 1991 May; 10(1):229-35. PubMed ID: 1710599 [TBL] [Abstract][Full Text] [Related]
18. Unexpected inactivation of acceptor consensus splice sequence by a -3 C to T transition in intron 2 of the CFTR gene. Bienvenu T; Hubert D; Fonknechten N; Dusser D; Kaplan JC; Beldjord C Hum Genet; 1994 Jul; 94(1):65-8. PubMed ID: 7518409 [TBL] [Abstract][Full Text] [Related]
19. Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations. Dörk T; Fislage R; Neumann T; Wulf B; Tümmler B Hum Genet; 1994 Jan; 93(1):67-73. PubMed ID: 7505767 [TBL] [Abstract][Full Text] [Related]
20. Alternative splicing of intron 23 of the human cystic fibrosis transmembrane conductance regulator gene resulting in a novel exon and transcript coding for a shortened intracytoplasmic C terminus. Yoshimura K; Chu CS; Crystal RG J Biol Chem; 1993 Jan; 268(1):686-90. PubMed ID: 7678008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]