BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 7689190)

  • 1. Receptor tyrosine kinase expression in astrocytic lesions: similar features in gliosis and glioma.
    Kristt DA; Reedy E; Yarden Y
    Neurosurgery; 1993 Jul; 33(1):106-15. PubMed ID: 7689190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences between phosphotyrosine accumulation and Neu/ErbB-2 receptor expression in astrocytic proliferative processes. Implications for glial oncogenesis.
    Kristt DA; Yarden Y
    Cancer; 1996 Sep; 78(6):1272-83. PubMed ID: 8826951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the Ets-1 proto-oncogene correlates with malignant potential in human astrocytic tumors.
    Kitange G; Kishikawa M; Nakayama T; Naito S; Iseki M; Shibata S
    Mod Pathol; 1999 Jun; 12(6):618-26. PubMed ID: 10392639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased expression in human astrocytomas of a 100 kDa protein with sequence homology to the ros tyrosine kinase domain.
    Wu JK; Wang JK
    Neurol Res; 1993 Oct; 15(5):316-20. PubMed ID: 7905605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of bcl-2 in reactive and neoplastic astrocytes: lack of correlation with presence or degree of malignancy.
    Krishna M; Smith TW; Recht LD
    J Neurosurg; 1995 Dec; 83(6):1017-22. PubMed ID: 7490615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma.
    Sonoda Y; Ozawa T; Aldape KD; Deen DF; Berger MS; Pieper RO
    Cancer Res; 2001 Sep; 61(18):6674-8. PubMed ID: 11559533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of p53 immunohistochemistry in differentiating reactive gliosis from malignant astrocytic lesions.
    Yaziji H; Massarani-Wafai R; Gujrati M; Kuhns JG; Martin AW; Parker JC
    Am J Surg Pathol; 1996 Sep; 20(9):1086-90. PubMed ID: 8764745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. J1-31 protein expression in astrocytes and astrocytomas.
    Shuangshoti S; Thorner PS; Ruangvejvorachai P; Saha B; Groshen S; Taylor CR; Malhotra S; Imam SA
    Neuropathology; 2009 Oct; 29(5):521-7. PubMed ID: 19019178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical significance of erbB2 protein overexpression.
    Paik S; Burkhard E; Lippman ME
    Cancer Treat Res; 1992; 61():181-91. PubMed ID: 1360231
    [No Abstract]   [Full Text] [Related]  

  • 10. Expression pattern of alpha-protein kinase C in human astrocytomas indicates a role in malignant progression.
    Benzil DL; Finkelstein SD; Epstein MH; Finch PW
    Cancer Res; 1992 May; 52(10):2951-6. PubMed ID: 1316231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of cathepsin D in human astrocytic neoplasias.
    Warich M; von Bossanyi P; Dietzmann K
    Gen Diagn Pathol; 1995 Oct; 141(2):93-6. PubMed ID: 8548599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WT1 Clone 6F-H2 Cytoplasmic Expression Differentiates Astrocytic Tumors from Astrogliosis and Associates with Tumor Grade, Histopathology, IDH1 Status, Apoptotic and Proliferative Indices: A Tissue Microarray Study.
    Abd El-Hafez A; Ismail Hany HSED
    Asian Pac J Cancer Prev; 2020 Aug; 21(8):2403-2413. PubMed ID: 32856872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors.
    Nakada M; Nakamura H; Ikeda E; Fujimoto N; Yamashita J; Sato H; Seiki M; Okada Y
    Am J Pathol; 1999 Feb; 154(2):417-28. PubMed ID: 10027400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice.
    Weissenberger J; Steinbach JP; Malin G; Spada S; Rülicke T; Aguzzi A
    Oncogene; 1997 May; 14(17):2005-13. PubMed ID: 9160879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-specific c-neu proto-oncogene protein overexpression in human malignant astrocytomas before and after xenografting.
    Bernstein JJ; Anagnostopoulos AV; Hattwick EA; Laws ER
    J Neurosurg; 1993 Feb; 78(2):240-51. PubMed ID: 8093625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes.
    Schittenhelm J; Mittelbronn M; Nguyen TD; Meyermann R; Beschorner R
    Brain Pathol; 2008 Jul; 18(3):344-53. PubMed ID: 18371184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice.
    Theurillat JP; Hainfellner J; Maddalena A; Weissenberger J; Aguzzi A
    Am J Pathol; 1999 Feb; 154(2):581-90. PubMed ID: 10027415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Podoplanin: a marker for reactive gliosis in gliomas and brain injury.
    Kolar K; Freitas-Andrade M; Bechberger JF; Krishnan H; Goldberg GS; Naus CC; Sin WC
    J Neuropathol Exp Neurol; 2015 Jan; 74(1):64-74. PubMed ID: 25470350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice.
    Charest A; Wilker EW; McLaughlin ME; Lane K; Gowda R; Coven S; McMahon K; Kovach S; Feng Y; Yaffe MB; Jacks T; Housman D
    Cancer Res; 2006 Aug; 66(15):7473-81. PubMed ID: 16885344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Could changes in the regulation of the PI3K/PKB/Akt signaling pathway and cell cycle be involved in astrocytic tumor pathogenesis and progression?
    Hlobilkova A; Ehrmann J; Sedlakova E; Krejci V; Knizetova P; Fiuraskova M; Kala M; Kalita O; Kolar Z
    Neoplasma; 2007; 54(4):334-41. PubMed ID: 17822324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.