These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 7689337)
21. Fusion of phospholipid vesicles induced by an amphiphilic model peptide: close correlation between fusogenicity and hydrophobicity of the peptide in an alpha-helix. Yoshimura T; Goto Y; Aimoto S Biochemistry; 1992 Jul; 31(26):6119-26. PubMed ID: 1627554 [TBL] [Abstract][Full Text] [Related]
22. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers. Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922 [TBL] [Abstract][Full Text] [Related]
23. Electrostatic and hydrophobic forces tether the proximal region of the angiotensin II receptor (AT1A) carboxyl terminus to anionic lipids. Mozsolits H; Unabia S; Ahmad A; Morton CJ; Thomas WG; Aguilar MI Biochemistry; 2002 Jun; 41(24):7830-40. PubMed ID: 12056915 [TBL] [Abstract][Full Text] [Related]
24. Formation of ion channels in planar lipid bilayer membranes by synthetic basic peptides. Anzai K; Hamasuna M; Kadono H; Lee S; Aoyagi H; Kirino Y Biochim Biophys Acta; 1991 May; 1064(2):256-66. PubMed ID: 1709812 [TBL] [Abstract][Full Text] [Related]
25. Nanotubules formed by highly hydrophobic amphiphilic alpha-helical peptides and natural phospholipids. Furuya T; Kiyota T; Lee S; Inoue T; Sugihara G; Logvinova A; Goldsmith P; Ellerby HM Biophys J; 2003 Mar; 84(3):1950-9. PubMed ID: 12609897 [TBL] [Abstract][Full Text] [Related]
26. Examination of the peptide sequence requirements for lipid-binding. Alternative pathways for promoting the interaction of amphipathic alpha-helical peptides with phosphatidylcholine. McLean LR; Hagaman KA; Owen TJ; Payne MH; Davidson WS; Krstenansky JL Biochim Biophys Acta; 1991 Oct; 1086(1):106-14. PubMed ID: 1954237 [TBL] [Abstract][Full Text] [Related]
27. An electrophysiological and spectroscopic study of the properties and structure of biological calcium channels. Investigations of a model ion channel. Reid DG; MacLachlan LK; Salter CJ; Saunders MJ; Jane SD; Lee AG; Tremeer EJ; Salisbury SA Biochim Biophys Acta; 1992 May; 1106(2):264-72. PubMed ID: 1317722 [TBL] [Abstract][Full Text] [Related]
28. Conformation of tachyplesin I from Tachypleus tridentatus when interacting with lipid matrices. Park NG; Lee S; Oishi O; Aoyagi H; Iwanaga S; Yamashita S; Ohno M Biochemistry; 1992 Dec; 31(48):12241-7. PubMed ID: 1457421 [TBL] [Abstract][Full Text] [Related]
29. Template-assembled melittin: structural and functional characterization of a designed, synthetic channel-forming protein. Pawlak M; Meseth U; Dhanapal B; Mutter M; Vogel H Protein Sci; 1994 Oct; 3(10):1788-805. PubMed ID: 7531528 [TBL] [Abstract][Full Text] [Related]
30. Conformationally constrained alpha-helical peptide models for protein ion channels. DeGrado WF; Lear JD Biopolymers; 1990 Jan; 29(1):205-13. PubMed ID: 1691664 [TBL] [Abstract][Full Text] [Related]
32. Investigation of human immunodeficiency virus fusion peptides. Analysis of interrelations between their structure and function. Slepushkin VA; Andreev SM; Sidorova MV; Melikyan GB; Grigoriev VB; Chumakov VM; Grinfeldt AE; Manukyan RA; Karamov EV AIDS Res Hum Retroviruses; 1992 Jan; 8(1):9-18. PubMed ID: 1736943 [TBL] [Abstract][Full Text] [Related]
33. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
34. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
35. Ion-channel formation assisted by electrostatic interhelical interactions in covalently dimerized amphiphilic helical peptides. Taira J; Jelokhani-Niaraki M; Osada S; Kato F; Kodama H Biochemistry; 2008 Mar; 47(12):3705-14. PubMed ID: 18302338 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of alpha-helix-forming peptides by gene engineering methods and their characterization by circular dichroism spectra measurements. Kojima S; Kuriki Y; Sato Y; Arisaka F; Kumagai I; Takahashi S; Miura K Biochim Biophys Acta; 1996 May; 1294(2):129-37. PubMed ID: 8645730 [TBL] [Abstract][Full Text] [Related]
37. Hydrophilic surface maps of channel-forming peptides: analysis of amphipathic helices. Kerr ID; Sansom MS Eur Biophys J; 1993; 22(4):269-77. PubMed ID: 7504619 [TBL] [Abstract][Full Text] [Related]
38. Effect of the arrangement of tandem repeating units of class A amphipathic alpha-helixes on lipid interaction. Mishra VK; Palgunachari MN; Lund-Katz S; Phillips MC; Segrest JP; Anantharamaiah GM J Biol Chem; 1995 Jan; 270(4):1602-11. PubMed ID: 7829491 [TBL] [Abstract][Full Text] [Related]
39. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes. Mishra VK; Palgunachari MN; Datta G; Phillips MC; Lund-Katz S; Adeyeye SO; Segrest JP; Anantharamaiah GM Biochemistry; 1998 Jul; 37(28):10313-24. PubMed ID: 9665740 [TBL] [Abstract][Full Text] [Related]
40. Topological equilibria of ion channel peptides in oriented lipid bilayers revealed by 15N solid-state NMR spectroscopy. Sudheendra US; Bechinger B Biochemistry; 2005 Sep; 44(36):12120-7. PubMed ID: 16142910 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]