BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7689412)

  • 1. The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged.
    Lasek RJ; Paggi P; Katz MJ
    Brain Res; 1993 Jul; 616(1-2):58-64. PubMed ID: 7689412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ; Paggi P; Katz MJ
    J Cell Biol; 1992 May; 117(3):607-16. PubMed ID: 1374068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [32P]orthophosphate and [35S]methionine label separate pools of neurofilaments with markedly different axonal transport kinetics in mouse retinal ganglion cells in vivo.
    Nixon RA; Lewis SE; Mercken M; Sihag RK
    Neurochem Res; 1994 Nov; 19(11):1445-53. PubMed ID: 7534878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity.
    Jung C; Yabe JT; Shea TB
    Brain Res; 2000 Feb; 856(1-2):12-9. PubMed ID: 10677606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axonal transport of neurofilaments: a single population of intermittently moving polymers.
    Li Y; Jung P; Brown A
    J Neurosci; 2012 Jan; 32(2):746-58. PubMed ID: 22238110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber.
    Nixon RA; Paskevich PA; Sihag RK; Thayer CY
    J Cell Biol; 1994 Aug; 126(4):1031-46. PubMed ID: 7519617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C; Shea TB
    Brain Res Mol Brain Res; 2004 Mar; 122(2):188-92. PubMed ID: 15010211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE; Nixon RA
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport.
    Nixon RA; Lewis SE; Dahl D; Marotta CA; Drager UC
    Brain Res Mol Brain Res; 1989 Mar; 5(2):93-108. PubMed ID: 2469928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ.
    Jung C; Shea TB
    Cell Motil Cytoskeleton; 1999; 42(3):230-40. PubMed ID: 10098936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit.
    Jung C; Lee S; Ortiz D; Zhu Q; Julien JP; Shea TB
    Brain Res Mol Brain Res; 2005 Nov; 141(2):151-5. PubMed ID: 16246456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential turnover of tubulin and neurofilament proteins in central nervous system neuron terminals.
    Garner JA
    Brain Res; 1988 Aug; 458(2):309-18. PubMed ID: 2463048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density.
    Rao MV; Engle LJ; Mohan PS; Yuan A; Qiu D; Cataldo A; Hassinger L; Jacobsen S; Lee VM; Andreadis A; Julien JP; Bridgman PC; Nixon RA
    J Cell Biol; 2002 Oct; 159(2):279-90. PubMed ID: 12403814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat.
    McQuarrie IG; Brady ST; Lasek RJ
    J Neurosci; 1986 Jun; 6(6):1593-605. PubMed ID: 2423662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three subpopulations of fast axonally transported retinal ganglion cell proteins are differentially trafficked in the rat optic pathway.
    Mulugeta S; Ciavarra RP; Maney RK; Tedeschi B
    J Neurosci Res; 2000 Jan; 59(2):247-58. PubMed ID: 10650883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slowing of neurofilament transport and the radial growth of developing nerve fibers.
    Hoffman PN; Griffin JW; Gold BG; Price DL
    J Neurosci; 1985 Nov; 5(11):2920-9. PubMed ID: 2414416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible mechanism for neurofilament slowing down in myelinated axon: Phosphorylation-induced variation of NF kinetics.
    Jia Z; Li Y
    PLoS One; 2021; 16(3):e0247656. PubMed ID: 33711034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axo-glial interactions at the dorsal root transitional zone regulate neurofilament protein synthesis in axotomized sensory neurons.
    Liuzzi FJ; Tedeschi B
    J Neurosci; 1992 Dec; 12(12):4783-92. PubMed ID: 1464767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis.
    Zhao Y; Szaro BG
    J Comp Neurol; 1994 May; 343(1):158-72. PubMed ID: 7517961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.