These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7689435)

  • 1. Contribution of proton transporter to acid-induced receptor potential in frog taste cells.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Aug; 105(4):725-8. PubMed ID: 7689435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depression of gustatory receptor potential in frog taste cell by parasympathetic nerve-induced slow hyperpolarizing potential.
    Sato T; Nishishita K; Mineda T; Okada Y; Toda K
    Chem Senses; 2007 Jan; 32(1):3-10. PubMed ID: 16956970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of biphasic slow depolarizing and slow hyperpolarizing potential in frog taste cell induced by parasympathetic efferent stimulation.
    Sato T; Nishishita K; Okada Y; Toda K
    Chem Senses; 2007 Nov; 32(9):817-23. PubMed ID: 17652347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ionic basis of the receptor potential of frog taste cells induced by sugar stimuli.
    Okada Y; Miyamoto T; Sato T
    J Exp Biol; 1992 Jan; 162():23-36. PubMed ID: 1372639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Proton-activated K+-channels of frog taste receptor cells].
    Bobkov IuV; Grishin AA; Rogachevskaia OA; Kolesnikov SS
    Biofizika; 1999; 44(5):870-9. PubMed ID: 10624527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic basis of receptor potential of frog taste cells induced by acid stimuli.
    Miyamoto T; Okada Y; Sato T
    J Physiol; 1988 Nov; 405():699-711. PubMed ID: 3267156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of slow depolarizing potential in frog taste cell induced by parasympathetic efferent stimulation under hypoxia.
    Sato T; Nishishita K; Okada Y; Toda K
    Chem Senses; 2007 May; 32(4):329-36. PubMed ID: 17301060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taste receptor cells express pH-sensitive leak K+ channels.
    Lin W; Burks CA; Hansen DR; Kinnamon SC; Gilbertson TA
    J Neurophysiol; 2004 Nov; 92(5):2909-19. PubMed ID: 15240769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quinine-HCl-induced modification of receptor potentials for taste stimuli in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1995 Feb; 12(1):45-52. PubMed ID: 7795491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo analysis of the effect of dicyclohexylcarbodiimide on electron and proton transfers in cytochrome bf complex of Chlorella sorokiniana.
    Joliot P; Joliot A
    Biochemistry; 1998 Jul; 37(29):10404-10. PubMed ID: 9671509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical properties and gustatory responses of various taste disk cells of frog fungiform papillae.
    Sato T; Nishishita K; Okada Y; Toda K
    Chem Senses; 2008 Apr; 33(4):371-8. PubMed ID: 18245793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of slow hyperpolarizing potentials in frog taste cells induced by glossopharyngeal nerve stimulation.
    Sato T; Okada Y; Toda K
    Chem Senses; 2004 Oct; 29(8):651-7. PubMed ID: 15466810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-lactate cotransport in the apical membrane of frog retinal pigment epithelium.
    Lin H; la Cour M; Andersen MV; Miller SS
    Exp Eye Res; 1994 Dec; 59(6):679-88. PubMed ID: 7698261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage clamping of a frog (Rana catesbeiana) taste cell with a single microelectrode.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Sep; 106(1):37-41. PubMed ID: 8104758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between gustatory depolarizing receptor potential and efferent-induced slow depolarizing synaptic potential in frog taste cell.
    Sato T; Nishishita K; Okada Y; Toda K
    Cell Mol Neurobiol; 2009 Mar; 29(2):243-52. PubMed ID: 18972206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane excitability of wing and rod cells in frog taste discs following denervation.
    Okuda-Akabane K; Fukami H; Narita K; Kitada Y
    Brain Res; 2006 Aug; 1103(1):145-9. PubMed ID: 16787642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of Na(+)-dependent K+ conductance in the apical membrane of frog taste cells.
    Miyamoto T; Fujiyama R; Okada Y; Sato T
    Brain Res; 1996 Apr; 715(1-2):79-85. PubMed ID: 8739625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharin activates cation conductance via inositol 1,4,5-trisphosphate production in a subset of isolated rod taste cells in the frog.
    Okada Y; Fujiyama R; Miyamoto T; Sato T
    Eur J Neurosci; 2001 Jan; 13(2):308-14. PubMed ID: 11168535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic basis of salt-induced receptor potential in frog taste cells.
    Miyamoto T; Okada Y; Sato T
    Comp Biochem Physiol A Comp Physiol; 1989; 94(4):591-5. PubMed ID: 2575944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.