BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7689977)

  • 21. Radiation inactivation of ion channels formed by gramicidin A. Protection by lipid double bonds and by alpha-tocopherol.
    Barth C; Stark G
    Biochim Biophys Acta; 1991 Jul; 1066(1):54-8. PubMed ID: 1712232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monovalent and multivalent binding of streptavidin to biotinylated gramicidin affects the kinetic properties of the ion channel.
    Antonenko YN; Rokitskaya TI; Kotova EA; Agapov II; Tonevitsky AG
    Biochemistry (Mosc); 2004 Feb; 69(2):220-7. PubMed ID: 15000691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraviolet flash photolysis of gramicidin-doped lipid bilayers.
    Busath DD; Hayon E
    Biochim Biophys Acta; 1988 Sep; 944(1):73-8. PubMed ID: 2458137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-triggered liposomal release: membrane permeabilization by photodynamic action.
    Pashkovskaya A; Kotova E; Zorlu Y; Dumoulin F; Ahsen V; Agapov I; Antonenko Y
    Langmuir; 2010 Apr; 26(8):5726-33. PubMed ID: 20000430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ionizing radiation on artificial (planar) lipid membranes. I. Radiation inactivation of the ion channel gramicidin A.
    Strässle M; Stark G; Wilhelm M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Feb; 51(2):265-86. PubMed ID: 2435667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol-dependent gramicidin A channel inactivation in red blood cell membranes and lipid bilayer membranes.
    Schagina LV; Blaskó K; Grinfeldt AE; Korchev YE; Lev AA
    Biochim Biophys Acta; 1989 Jan; 978(1):145-50. PubMed ID: 2464373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.
    Antonenko YN; Kotova EA; Omarova EO; Rokitskaya TI; Ol'shevskaya VA; Kalinin VN; Nikitina RG; Osipchuk JS; Kaplan MA; Ramonova AA; Moisenovich MM; Agapov II; Kirpichnikov MP
    Biochim Biophys Acta; 2014 Mar; 1838(3):793-801. PubMed ID: 24287152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rimantadine effects on the elasticity of bilayer lipid membranes and on ion transport through gramicidin D channels.
    Hianik T; Laputková G; Poláková K
    Gen Physiol Biophys; 1990 Aug; 9(4):391-402. PubMed ID: 1703099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local Anesthetics Affect Gramicidin A Channels via Membrane Electrostatic Potentials.
    Efimova SS; Zakharova AA; Schagina LV; Ostroumova OS
    J Membr Biol; 2016 Dec; 249(6):781-787. PubMed ID: 27592116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Angiotensin II-induced formation of ionic channels in bilayer lipid membranes.
    Hianik T; Laputková G
    Gen Physiol Biophys; 1991 Feb; 10(1):19-30. PubMed ID: 1714413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetically different populations of O-pyromellityl-gramicidin channels induced by poly-L-lysines in lipid bilayers.
    Krylov AV; Rokitskaya TI; Kotova EA; Yaroslavov AA; Antonenko YN
    J Membr Biol; 2002 Sep; 189(2):119-30. PubMed ID: 12235487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of Zn-phthalocyanine photosensitized lysis of human erythrocytes.
    Zavodnik IB; Zavodnik LB; Bryszewska MJ
    J Photochem Photobiol B; 2002 May; 67(1):1-10. PubMed ID: 12007461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of pyridinium bis-retinoid (A2E) with bilayer lipid membranes.
    Sokolov VS; Sokolenko EA; Sokolov AV; Dontsov AE; Chizmadzhev YA; Ostrovsky MA
    J Photochem Photobiol B; 2007 Feb; 86(2):177-85. PubMed ID: 17070694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The conformational preference of gramicidin channels is a function of lipid bilayer thickness.
    Mobashery N; Nielsen C; Andersen OS
    FEBS Lett; 1997 Jul; 412(1):15-20. PubMed ID: 9257681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virus inactivation in red cell concentrates by photosensitization with phthalocyanines: protection of red cells but not of vesicular stomatitis virus with a water-soluble analogue of vitamin E.
    Ben-Hur E; Rywkin S; Rosenthal I; Geacintov NE; Horowitz B
    Transfusion; 1995 May; 35(5):401-6. PubMed ID: 7740611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.
    Rokitskaya TI; Kotova EA; Antonenko YN
    Biophys J; 2002 Feb; 82(2):865-73. PubMed ID: 11806928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of electrostatics in the binding of charged metallophthalocyanines to neutral and charged phospholipid membranes.
    Pashkovskaya AA; Maizlish VE; Shaposhnikov GP; Kotova EA; Antonenko YN
    Biochim Biophys Acta; 2008 Feb; 1778(2):541-8. PubMed ID: 18035042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-jump and voltage-jump experiments at planar lipid membranes support an aggregational (micellar) model of the gramicidin A ion channel.
    Stark G; Strässle M; Takácz Z
    J Membr Biol; 1986; 89(1):23-37. PubMed ID: 2420993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.