These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 7690114)
41. N-methyl-D-aspartate receptor complex in the hippocampus of elderly, normal individuals and those with Alzheimer's disease. Ułas J; Brunner LC; Geddes JW; Choe W; Cotman CW Neuroscience; 1992 Jul; 49(1):45-61. PubMed ID: 1407551 [TBL] [Abstract][Full Text] [Related]
42. Autoradiographic characterization and localization of quisqualate binding sites in rat brain using the antagonist [3H]6-cyano-7-nitroquinoxaline-2,3-dione: comparison with (R,S)-[3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites. Nielsen EO; Drejer J; Cha JH; Young AB; Honoré T J Neurochem; 1990 Feb; 54(2):686-95. PubMed ID: 1967632 [TBL] [Abstract][Full Text] [Related]
43. Quantitative autoradiographic study of L-glutamate binding sites in normal and atrophic human cerebellum. Hatziefthimiou A; Mitsacos A; Mitsaki E; Plaitakis A; Kouvelas ED J Neurosci Res; 1991 Mar; 28(3):367-75. PubMed ID: 1677427 [TBL] [Abstract][Full Text] [Related]
44. Increased AMPA-sensitive quisqualate receptor binding and reduced NMDA receptor binding in epileptic human hippocampus. Hosford DA; Crain BJ; Cao Z; Bonhaus DW; Friedman AH; Okazaki MM; Nadler JV; McNamara JO J Neurosci; 1991 Feb; 11(2):428-34. PubMed ID: 1846907 [TBL] [Abstract][Full Text] [Related]
45. Long-term potentiation is associated with increased [3H]AMPA binding in rat hippocampus. Tocco G; Maren S; Shors TJ; Baudry M; Thompson RF Brain Res; 1992 Feb; 573(2):228-34. PubMed ID: 1380390 [TBL] [Abstract][Full Text] [Related]
46. Vinpocetine preferentially antagonizes quisqualate/AMPA receptor responses: evidence from release and ligand binding studies. Kiss B; Cai NS; Erdö SL Eur J Pharmacol; 1991 Dec; 209(1-2):109-12. PubMed ID: 1687679 [TBL] [Abstract][Full Text] [Related]
47. N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization. Pittaluga A; Raiteri M J Pharmacol Exp Ther; 1992 Jan; 260(1):232-7. PubMed ID: 1370540 [TBL] [Abstract][Full Text] [Related]
48. Spatiotemporal patterning of glutamate receptors in developing ferret striate cortex. Smith AL; Thompson ID Eur J Neurosci; 1999 Mar; 11(3):923-34. PubMed ID: 10103086 [TBL] [Abstract][Full Text] [Related]
49. Ibotenic acid analogues. Synthesis, molecular flexibility, and in vitro activity of agonists and antagonists at central glutamic acid receptors. Lauridsen J; Honoré T; Krogsgaard-Larsen P J Med Chem; 1985 May; 28(5):668-72. PubMed ID: 2859375 [TBL] [Abstract][Full Text] [Related]
50. Density and distribution of excitatory amino acid receptors in the developing human fetal brain: a quantitative autoradiographic study. Lee H; Choi BH Exp Neurol; 1992 Dec; 118(3):284-90. PubMed ID: 1339116 [TBL] [Abstract][Full Text] [Related]
51. NMDA and kainic acid receptors have a complementary distribution to AMPA receptors in the human cerebellum. Jansen KL; Faull RL; Dragunow M Brain Res; 1990 Nov; 532(1-2):351-4. PubMed ID: 2178036 [TBL] [Abstract][Full Text] [Related]
52. Presence of the binding of a variety of ligands related to ionotropic excitatory amino acid receptors in rat retina. Zuo P; Ogita K; Yoneda Y Brain Res; 1992 Mar; 576(1):168-72. PubMed ID: 1381259 [TBL] [Abstract][Full Text] [Related]
53. Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. Rakic P; Goldman-Rakic PS; Gallager D J Neurosci; 1988 Oct; 8(10):3670-90. PubMed ID: 2848104 [TBL] [Abstract][Full Text] [Related]
54. Transient postnatal increases in excitatory amino acid binding sites in rat ventral mesencephalon. Chaudieu I; Mount H; Quirion R; Boksa P Neurosci Lett; 1991 Dec; 133(2):267-70. PubMed ID: 1667817 [TBL] [Abstract][Full Text] [Related]
55. Modulation of DL-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/quisqualate receptors by phospholipase A2 treatment. Massicotte G; Baudry M Neurosci Lett; 1990 Oct; 118(2):245-8. PubMed ID: 2177177 [TBL] [Abstract][Full Text] [Related]
56. Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum. Dewar D; Chalmers DT; Shand A; Graham DI; McCulloch J Ann Neurol; 1990 Dec; 28(6):805-10. PubMed ID: 1980999 [TBL] [Abstract][Full Text] [Related]
57. Thiocyanate stabilizes AMPA binding to the quisqualate receptor. Nielsen EO; Cha JH; Honoré T; Penney JB; Young AB Eur J Pharmacol; 1988 Nov; 157(2-3):197-203. PubMed ID: 2906292 [TBL] [Abstract][Full Text] [Related]
58. Presynaptic facilitation of dopamine release through D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors on synaptosomes from the rat striatum. Desce JM; Godeheu G; Galli T; Artaud F; Chéramy A; Glowinski J J Pharmacol Exp Ther; 1991 Nov; 259(2):692-8. PubMed ID: 1682483 [TBL] [Abstract][Full Text] [Related]
59. Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. Hendry SH; Fuchs J; deBlas AL; Jones EG J Neurosci; 1990 Jul; 10(7):2438-50. PubMed ID: 2165524 [TBL] [Abstract][Full Text] [Related]
60. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials. Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]