These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 7690221)

  • 21. Genetic applications of yeast transformation with linear and gapped plasmids.
    Orr-Weaver TL; Szostak JW; Rothstein RJ
    Methods Enzymol; 1983; 101():228-45. PubMed ID: 6310326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments.
    Miller DN
    J Microbiol Methods; 2001 Feb; 44(1):49-58. PubMed ID: 11166099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing pyrene mineralization in contaminated soil by the addition of humic acids or composted contaminated soil.
    Haderlein A; Legros R; Ramsay B
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):555-9. PubMed ID: 11549037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis.
    LaMontagne MG; Michel FC; Holden PA; Reddy CA
    J Microbiol Methods; 2002 May; 49(3):255-64. PubMed ID: 11869790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements.
    Qian C; Hettich RL
    J Proteome Res; 2017 Jul; 16(7):2537-2546. PubMed ID: 28537741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction.
    Sagar K; Singh SP; Goutam KK; Konwar BK
    J Microbiol Methods; 2014 Feb; 97():68-73. PubMed ID: 24280193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PCR amplification of crude microbial DNA extracted from soil.
    Yeates C; Gillings MR; Davison AD; Altavilla N; Veal DA
    Lett Appl Microbiol; 1997 Oct; 25(4):303-7. PubMed ID: 9351282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies in humic acids decomposing bacteria in soil. I. Selection of a method for separation of humic acids.
    Zayed MN; Taha SM; Zohdy L
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1973; 128(1):162-7. PubMed ID: 4740798
    [No Abstract]   [Full Text] [Related]  

  • 29. A rapid DNA extraction method for PCR amplification from wetland soils.
    Li J; Li B; Zhou Y; Xu J; Zhao J
    Lett Appl Microbiol; 2011 Jun; 52(6):626-33. PubMed ID: 21545471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils.
    Mahmoudi N; Slater GF; Fulthorpe RR
    Can J Microbiol; 2011 Aug; 57(8):623-8. PubMed ID: 21815819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring survival and gene transfer in soil microcosms of recombinant Escherichia coli designed to represent an industrial production strain.
    Henschke RB; Henschke EJ; Schmidt FR
    Appl Microbiol Biotechnol; 1991 May; 35(2):247-52. PubMed ID: 1367370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of two bacterial DNA extraction methods from non-polluted and polluted soils.
    Mazziotti M; Henry S; Laval-Gilly P; Bonnefoy A; Falla J
    Folia Microbiol (Praha); 2018 Jan; 63(1):85-92. PubMed ID: 28667598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient and economical method for extraction of DNA amenable to biotechnological manipulations, from diverse soils and sediments.
    Sharma S; Sharma KK; Kuhad RC
    J Appl Microbiol; 2014 Apr; 116(4):923-33. PubMed ID: 24329912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escherichia coli O157 survival in liquid culture and artificial soil microcosms with variable pH, humic acid and clay content.
    Baker CA; De J; Schneider KR
    J Appl Microbiol; 2021 Feb; 130(2):416-423. PubMed ID: 32633002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [An efficient method for DNA extraction from compost].
    He LH; Zhao Y; Chen MJ; Pan YJ
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):162-5. PubMed ID: 16579488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of bacterial plasmid DNA.
    Engebrecht J; Heilig JS; Brent R
    Curr Protoc Immunol; 2001 May; Chapter 10():Unit 10.3. PubMed ID: 18432694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a plasmid in isolates of Corynebacterium sepedonicum.
    Clark MC; Lawrence CH
    Can J Microbiol; 1986 Aug; 32(8):617-22. PubMed ID: 3021310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High diversity in DNA of soil bacteria.
    Torsvik V; Goksøyr J; Daae FL
    Appl Environ Microbiol; 1990 Mar; 56(3):782-7. PubMed ID: 2317046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel approach for high-level expression and purification of GST-fused highly thermostable Taq DNA polymerase in Escherichia coli.
    Din RU; Khan MI; Jan A; Khan SA; Ali I
    Arch Microbiol; 2020 Aug; 202(6):1449-1458. PubMed ID: 32189018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear electrophoresis for purification of soil DNA for metagenomics.
    Engel K; Pinnell L; Cheng J; Charles TC; Neufeld JD
    J Microbiol Methods; 2012 Jan; 88(1):35-40. PubMed ID: 22056233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.