These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 7690400)
21. Role of iron, hydrogen peroxide and reactive oxygen species in microsomal oxidation of glycerol to formaldehyde. Clejan LA; Cederbaum AI Arch Biochem Biophys; 1991 Feb; 285(1):83-9. PubMed ID: 1846735 [TBL] [Abstract][Full Text] [Related]
22. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Kukiełka E; Dicker E; Cederbaum AI Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551 [TBL] [Abstract][Full Text] [Related]
23. Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H:quinone reductase (DT-diaphorase) activity. Wefers H; Sies H Arch Biochem Biophys; 1983 Jul; 224(2):568-78. PubMed ID: 6191666 [TBL] [Abstract][Full Text] [Related]
24. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction. Yang MX; Cederbaum AI Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685 [TBL] [Abstract][Full Text] [Related]
25. Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Cederbaum AI Mol Pharmacol; 1994 Jan; 45(1):150-7. PubMed ID: 8302274 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of the oxidation of hydroxyl radical scavenging agents after alkaline phosphatase treatment of rat liver microsomes. Puntarulo S; Cederbaum AI Biochim Biophys Acta; 1991 May; 1074(1):12-8. PubMed ID: 1904277 [TBL] [Abstract][Full Text] [Related]
27. One- and two-electron reduction of quinones by rat liver subcellular fractions. Nakamura M; Hayashi T J Biochem; 1994 Jun; 115(6):1141-7. PubMed ID: 7982895 [TBL] [Abstract][Full Text] [Related]
28. Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases. Jaiswal AK Arch Biochem Biophys; 2000 Mar; 375(1):62-8. PubMed ID: 10683249 [TBL] [Abstract][Full Text] [Related]
29. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. Winston GW; Cederbaum AI J Biol Chem; 1983 Feb; 258(3):1508-13. PubMed ID: 6296101 [TBL] [Abstract][Full Text] [Related]
30. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide. Feierman DE; Winston GW; Cederbaum AI Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364 [TBL] [Abstract][Full Text] [Related]
31. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes. Rao DN; Cederbaum AI Free Radic Biol Med; 1997; 22(3):439-46. PubMed ID: 8981035 [TBL] [Abstract][Full Text] [Related]
32. Interactions between paraquat and ferric complexes in the microsomal generation of oxygen radicals. Puntarulo S; Cederbaum AI Biochem Pharmacol; 1989 Sep; 38(17):2911-8. PubMed ID: 2550014 [TBL] [Abstract][Full Text] [Related]
33. Increased production of hydroxyl radical by pericentral microsomes compared to periportal microsomes after pyrazole induction of cytochrome P4502E1. Kukiełka E; Cederbaum AI Biochem Biophys Res Commun; 1995 Oct; 215(2):698-705. PubMed ID: 7488011 [TBL] [Abstract][Full Text] [Related]
34. The effect of EDTA and iron on the oxidation of hydroxyl radical scavenging agents and ethanol by rat liver microsomes. Feierman DE; Cederbaum AI Biochem Biophys Res Commun; 1983 Oct; 116(2):765-70. PubMed ID: 6418168 [TBL] [Abstract][Full Text] [Related]
35. Stimulation by paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde. Clejan LA; Cederbaum AI Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):781-6. PubMed ID: 8240292 [TBL] [Abstract][Full Text] [Related]
36. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus). Dudley BF; Winston GW Arch Biochem Biophys; 1995 Feb; 316(2):879-85. PubMed ID: 7532387 [TBL] [Abstract][Full Text] [Related]
37. Synergistic interactions between NADPH-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Clejan L; Cederbaum AI Biochem Pharmacol; 1989 Jun; 38(11):1779-86. PubMed ID: 2500125 [TBL] [Abstract][Full Text] [Related]
38. Hydroxyl radicals are not involved in NADPH dependent microsomal lipid peroxidation. Bast A; Steeghs MH Experientia; 1986 May; 42(5):555-6. PubMed ID: 3011492 [TBL] [Abstract][Full Text] [Related]
39. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction. Thomas C; Vile GF; Winterbourn CC Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256 [TBL] [Abstract][Full Text] [Related]
40. Increased oxygen radical-dependent inactivation of metabolic enzymes by liver microsomes after chronic ethanol consumption. Dicker E; Cederbaum AI FASEB J; 1988 Oct; 2(13):2901-6. PubMed ID: 3169467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]