These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 7690504)
1. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity. Goobar-Larsson L; Bäckbro K; Unge T; Bhikhabhai R; Vrang L; Zhang H; Orvell C; Strandberg B; Oberg B Virology; 1993 Oct; 196(2):731-8. PubMed ID: 7690504 [TBL] [Abstract][Full Text] [Related]
2. Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation. Sluis-Cremer N; Arion D; Abram ME; Parniak MA Int J Biochem Cell Biol; 2004 Sep; 36(9):1836-47. PubMed ID: 15183348 [TBL] [Abstract][Full Text] [Related]
3. Expression of polypeptides of human immunodeficiency virus-1 reverse transcriptase in Escherichia coli. Becerra SP; Kumar A; Wilson SH Protein Expr Purif; 1993 Jun; 4(3):187-99. PubMed ID: 7686063 [TBL] [Abstract][Full Text] [Related]
4. Glutamic residue 438 within the protease-sensitive subdomain of HIV-1 reverse transcriptase is critical for heterodimer processing in viral particles. Navarro JM; Damier L; Boretto J; Priet S; Canard B; Quérat G; Sire J Virology; 2001 Nov; 290(2):300-8. PubMed ID: 11883194 [TBL] [Abstract][Full Text] [Related]
5. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities. Wilhelm M; Boutabout M; Wilhelm FX Biochem J; 2000 Jun; 348 Pt 2(Pt 2):337-42. PubMed ID: 10816427 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the p68/p58 heterodimer of human immunodeficiency virus type 2 reverse transcriptase. Fan N; Rank KB; Poppe SM; Tarpley WG; Sharma SK Biochemistry; 1996 Feb; 35(6):1911-7. PubMed ID: 8639674 [TBL] [Abstract][Full Text] [Related]
7. Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase. Tachedjian G; Radzio J; Sluis-Cremer N Proteins; 2005 Jul; 60(1):5-13. PubMed ID: 15852304 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of human immunodeficiency virus type 1 reverse transcriptase at amino acid position 138. Pelemans H; Aertsen A; Van Laethem K; Vandamme AM; De Clercq E; Pérez-Pérez MJ; San-Félix A; Velázquez S; Camarasa MJ; Balzarini J Virology; 2001 Feb; 280(1):97-106. PubMed ID: 11162823 [TBL] [Abstract][Full Text] [Related]
9. Molecular biological characterization of the human foamy virus reverse transcriptase and ribonuclease H domains. Kögel D; Aboud M; Flügel RM Virology; 1995 Oct; 213(1):97-108. PubMed ID: 7483284 [TBL] [Abstract][Full Text] [Related]
10. A drug resistance mutation in the inhibitor binding pocket of human immunodeficiency virus type 1 reverse transcriptase impairs DNA synthesis and RNA degradation. Fan N; Rank KB; Slade DE; Poppe SM; Evans DB; Kopta LA; Olmsted RA; Thomas RC; Tarpley WG; Sharma SK Biochemistry; 1996 Jul; 35(30):9737-45. PubMed ID: 8703945 [TBL] [Abstract][Full Text] [Related]
11. Alterations to the primer grip of p66 HIV-1 reverse transcriptase and their consequences for template-primer utilization. Ghosh M; Jacques PS; Rodgers DW; Ottman M; Darlix JL; Le Grice SF Biochemistry; 1996 Jul; 35(26):8553-62. PubMed ID: 8679616 [TBL] [Abstract][Full Text] [Related]
12. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. Gao HQ; Sarafianos SG; Arnold E; Hughes SH J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369 [TBL] [Abstract][Full Text] [Related]
13. Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase. Boyer PL; Ferris AL; Clark P; Whitmer J; Frank P; Tantillo C; Arnold E; Hughes SH J Mol Biol; 1994 Oct; 243(3):472-83. PubMed ID: 7525967 [TBL] [Abstract][Full Text] [Related]
14. Mutagenesis of the conserved aspartic acid 443, glutamic acid 478, asparagine 494, and aspartic acid 498 residues in the ribonuclease H domain of p66/p51 human immunodeficiency virus type I reverse transcriptase. Expression and biochemical analysis. Mizrahi V; Brooksbank RL; Nkabinde NC J Biol Chem; 1994 Jul; 269(30):19245-9. PubMed ID: 7518454 [TBL] [Abstract][Full Text] [Related]
16. The basic loop of the RNase H domain of MLV RT is important both for RNase H and for polymerase activity. Boyer PL; Gao HQ; Frank P; Clark PK; Hughes SH Virology; 2001 Mar; 282(1):206-13. PubMed ID: 11259203 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of the ribonuclease H and DNA polymerase activities of HIV-1 reverse transcriptase by N-(4-tert-butylbenzoyl)-2-hydroxy-1-naphthaldehyde hydrazone. Borkow G; Fletcher RS; Barnard J; Arion D; Motakis D; Dmitrienko GI; Parniak MA Biochemistry; 1997 Mar; 36(11):3179-85. PubMed ID: 9115994 [TBL] [Abstract][Full Text] [Related]
18. Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus-strand DNA transfer. Mbisa JL; Nikolenko GN; Pathak VK J Virol; 2005 Jan; 79(1):419-27. PubMed ID: 15596835 [TBL] [Abstract][Full Text] [Related]
19. Substitution of Asp114 or Arg116 in the fingers domain of moloney murine leukemia virus reverse transcriptase affects interactions with the template-primer resulting in decreased processivity. Gu J; Villanueva RA; Snyder CS; Roth MJ; Georgiadis MM J Mol Biol; 2001 Jan; 305(2):341-59. PubMed ID: 11124910 [TBL] [Abstract][Full Text] [Related]
20. The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is affected by the thumb subdomain of the small protein subunits. Sevilya Z; Loya S; Hughes SH; Hizi A J Mol Biol; 2001 Aug; 311(5):957-71. PubMed ID: 11531332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]