These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. Berger HA; Travis SM; Welsh MJ J Biol Chem; 1993 Jan; 268(3):2037-47. PubMed ID: 7678414 [TBL] [Abstract][Full Text] [Related]
8. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895 [TBL] [Abstract][Full Text] [Related]
9. Conformation, independent of charge, in the R domain affects cystic fibrosis transmembrane conductance regulator channel openings. Xie J; Zhao J; Davis PB; Ma J Biophys J; 2000 Mar; 78(3):1293-305. PubMed ID: 10692317 [TBL] [Abstract][Full Text] [Related]
10. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
11. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Chen JH J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849 [TBL] [Abstract][Full Text] [Related]
12. Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum. Seibert FS; Chang XB; Aleksandrov AA; Clarke DM; Hanrahan JW; Riordan JR Biochim Biophys Acta; 1999 Dec; 1461(2):275-83. PubMed ID: 10581361 [TBL] [Abstract][Full Text] [Related]
13. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Dulhanty AM; Riordan JR Biochemistry; 1994 Apr; 33(13):4072-9. PubMed ID: 7511414 [TBL] [Abstract][Full Text] [Related]
15. Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Mihályi C; Iordanov I; Töröcsik B; Csanády L Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21740-21746. PubMed ID: 32817533 [TBL] [Abstract][Full Text] [Related]
16. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
17. Effect of deletion mutations on the function of CFTR chloride channels. Rich DP; Gregory RJ; Cheng SH; Smith AE; Welsh MJ Recept Channels; 1993; 1(3):221-32. PubMed ID: 7522901 [TBL] [Abstract][Full Text] [Related]
18. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. Carson MR; Travis SM; Welsh MJ J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246 [TBL] [Abstract][Full Text] [Related]
19. Effect of deleting the R domain on CFTR-generated chloride channels. Rich DP; Gregory RJ; Anderson MP; Manavalan P; Smith AE; Welsh MJ Science; 1991 Jul; 253(5016):205-7. PubMed ID: 1712985 [TBL] [Abstract][Full Text] [Related]
20. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator. Wang G J Biol Chem; 2011 Jan; 286(3):2171-82. PubMed ID: 21059651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]