BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 7691232)

  • 1. [The effect of weightlessness on amphibians. The skeleton and mineral metabolism].
    Besova NV; Savel'ev SV; Chernikov VP
    Biull Eksp Biol Med; 1993 Jul; 116(7):90-2. PubMed ID: 7691232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of weightlessness on amphibians. The ultimobranchial body].
    Besova NV; Savelev SV
    Biull Eksp Biol Med; 1993 Jul; 116(7):87-90. PubMed ID: 7691231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evaluation of the changes in the bone structures of the human axial skeleton in prolonged space flight].
    Stupakov GP; Kazeĭkin VS; Kozlovskiĭ AP; Korolev VV
    Kosm Biol Aviakosm Med; 1984; 18(2):33-7. PubMed ID: 6716940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of weightlessness on mineral metabolism; metabolic studies on Skylab orbital space flights.
    Whedon GD; Lutwak L; Rambaut P; Whittle M; Leach C; Reid J; Smith M
    Calcif Tissue Res; 1976 Aug; 21 Suppl():423-30. PubMed ID: 953833
    [No Abstract]   [Full Text] [Related]  

  • 5. Mineral and nitrogen metabolic studies on Skylab flights and comparison with effects of earth long-term recumbency.
    Whedon GD; Lutwak L; Rambaut P; Whittle M; Leach C; Reid J; Smith M
    Life Sci Space Res; 1976; 14():119-27. PubMed ID: 11977269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The characteristics of osteoclast localization in the bones of the extremities of the crested salamander Pleurodeles waltlii].
    Berezovskaia OP
    Tsitol Genet; 1999; 33(2):11-7. PubMed ID: 10465835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone demineralization during space flight.
    Anderson SA; Cohn SH
    Physiologist; 1985 Aug; 28(4):212-7. PubMed ID: 3901053
    [No Abstract]   [Full Text] [Related]  

  • 8. [Bone demineralization in prolonged space flight].
    Judica-Cordiglia A
    Minerva Ortop; 1968 Aug; 19(8):410-5. PubMed ID: 5740915
    [No Abstract]   [Full Text] [Related]  

  • 9. [Comparative analysis of cosmonauts skeleton changes after space flights on orbital station Mir and international space station and possibilities of prognosis for interplanetary missions].
    Oganov VS; Bogomolov VV; Bakulin AV; Novikov VE; Kabitskaia OE; Murashko LM; Morgun VV; Kasparskiĭ RR
    Fiziol Cheloveka; 2010; 36(3):39-47. PubMed ID: 20586301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characteristics of bone tissue of rats after flight aboard biosputnik Kosmos-1129].
    Rogacheva IV; Stupakov GP; Volozhin AI; Pavlova MN; Poliakov AN
    Kosm Biol Aviakosm Med; 1984; 18(5):39-44. PubMed ID: 6513471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological mechanisms of adaptation to weightlessness. Data from experiments with animals in earth-orbit biosatellites.
    Gazenko OG; Genin AM; Il'in EA; Serova LV; Tigranyan RA; Oganov VS
    Biol Bull Acad Sci USSR; 1980; 7(1):1-12. PubMed ID: 7002224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the numbers of osteoclasts in newts under conditions of microgravity.
    Berezovska OP; Rodionova NV; Grigoryan EN; Mitashov VI
    Adv Space Res; 1998; 21(8-9):1059-63. PubMed ID: 11541351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium metabolism in space flight.
    Neuman WF
    Life Sci Space Res; 1970; 8():309-15. PubMed ID: 11826890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress under normal conditions, hypokinesia simulating weightlessness, and during flights in space.
    Grigor'ev AI; Fedorov BM
    Hum Physiol; 1996; 22(2):139-47. PubMed ID: 11541518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Man in the condition of weightlessness (author's transl)].
    Fuchs HS
    MMW Munch Med Wochenschr; 1981 Jan; 123(5):159-64. PubMed ID: 6780889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of the combined exposure to ionizing radiation and weightlessness on the calcium and phosphorus content in the mineral fraction of rat calcified skeletal tissues].
    Prokhonchukov AA; Komissarova NA; Kolesnik AG; Novikov LL
    Radiobiologiia; 1979; 19(5):760-2. PubMed ID: 515371
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effect of weightlessness on the skeletal development of the rat fetus].
    Denisova LA
    Kosm Biol Aviakosm Med; 1986; 20(4):60-3. PubMed ID: 3762055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative study of the effect of weightlessness and artificial gravity on the density, ash, calcium, and phosphorus content of calcified tissues].
    Prokhonchukov AA; Komissarova NA; Zhizhina NA; Volozhin AI
    Kosm Biol Aviakosm Med; 1980; 14(4):23-6. PubMed ID: 7421095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modern analysis of bone loss mechanisms in microgravity.
    Oganov VS
    J Gravit Physiol; 2004 Jul; 11(2):P143-6. PubMed ID: 16237819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of 85Sr as an indicator of bone mineral replacement in dogs after disuse demineralization.
    Palmer HE; Karagianes MT
    Aviat Space Environ Med; 1976 Jan; 47(1):17-9. PubMed ID: 1247429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.