These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7691576)

  • 1. Where to record motor activity: an evaluation of commonly used sites of placement for activity monitors.
    Van Hilten JJ; Middelkoop HA; Kuiper SI; Kramer CG; Roos RA
    Electroencephalogr Clin Neurophysiol; 1993 Oct; 89(5):359-62. PubMed ID: 7691576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 45-hour continuous quintuple-site actimetry: relations between trunk and limb movements and effects of circadian sleep-wake rhythmicity.
    Middelkoop HA; van Dam EM; Smilde-van den Doel DA; Van Dijk G
    Psychophysiology; 1997 Mar; 34(2):199-203. PubMed ID: 9090270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actigraphy: a means of assessing circadian patterns in human activity.
    Brown AC; Smolensky MH; D'Alonzo GE; Redman DP
    Chronobiol Int; 1990; 7(2):125-33. PubMed ID: 2242506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor-unit responses in human wrist flexor and extensor muscles to transcranial cortical stimuli.
    Calancie B; Nordin M; Wallin U; Hagbarth KE
    J Neurophysiol; 1987 Nov; 58(5):1168-85. PubMed ID: 3694249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of parkinsonian patients by continuous wrist activity monitoring.
    Van Hilten JJ; Hoogland G; van der Velde EA; van Dijk JG; Kerkhof GA; Roos RA
    Clin Neuropharmacol; 1993 Feb; 16(1):36-45. PubMed ID: 8422656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of commonly used placement sites for activity monitoring.
    Pat Rapp M; Nelson F; Oliver M; Bergstrom N; Cron SG
    Biol Res Nurs; 2010 Jan; 11(3):302-9. PubMed ID: 19617236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving motor activity assessment in depression: which sensor placement, analytic strategy and diurnal time frame are most powerful in distinguishing patients from controls and monitoring treatment effects.
    Reichert M; Lutz A; Deuschle M; Gilles M; Hill H; Limberger MF; Ebner-Priemer UW
    PLoS One; 2015; 10(4):e0124231. PubMed ID: 25885258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal blood pressure variability and physical activity measured electronically and by diary.
    Gretler DD; Carlson GF; Montano AV; Murphy MB
    Am J Hypertens; 1993 Feb; 6(2):127-33. PubMed ID: 8471232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nocturnal activity and immobility across aging (50-98 years) in healthy persons.
    van Hilten JJ; Middelkoop HA; Braat EA; van der Velde EA; Kerkhof GA; Ligthart GJ; Wauquier A; Kamphuisen HA
    J Am Geriatr Soc; 1993 Aug; 41(8):837-41. PubMed ID: 8340562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a wrist activity monitor for the measurement of nocturnal scratching in patients with atopic dermatitis.
    Ebata T; Iwasaki S; Kamide R; Niimura M
    Br J Dermatol; 2001 Feb; 144(2):305-9. PubMed ID: 11251563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Handedness and circadian motor asymmetries in humans: preliminary findings.
    Natale V; Lehnkering H; Siegmund R
    Physiol Behav; 2010 Jun; 100(4):322-6. PubMed ID: 20233597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diurnal effects of motor activity and fatigue in Parkinson's disease.
    van Hilten JJ; Hoogland G; van der Velde EA; Middelkoop HA; Kerkhof GA; Roos RA
    J Neurol Neurosurg Psychiatry; 1993 Aug; 56(8):874-7. PubMed ID: 8350103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three decades of continuous wrist-activity recording: analysis of sleep duration.
    Borbély AA; Rusterholz T; Achermann P
    J Sleep Res; 2017 Apr; 26(2):188-194. PubMed ID: 28093825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory activity monitoring during sleep: an evaluation of internight and intrasubject variability in healthy persons aged 50-98 years.
    van Hilten JJ; Braat EA; van der Velde EA; Middelkoop HA; Kerkhof GA; Kamphuisen HA
    Sleep; 1993 Feb; 16(2):146-50. PubMed ID: 8446834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of neurons in putamen during active and passive movements of wrist.
    Liles SL
    J Neurophysiol; 1985 Jan; 53(1):217-36. PubMed ID: 3973659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A frequency analysis of neuronal activity in monkey thalamus, motor cortex and electromyograms in wrist oscillations.
    Butler EG; Horne MK; Churchward PR
    J Physiol; 1992 Jan; 445():49-68. PubMed ID: 1501144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypokinesia in Parkinson's disease: influence of age, disease severity, and disease duration.
    van Hilten JJ; Braat EA; van der Velde EA; Middelkoop HA; van Dijk JG; Lighart GJ; Roos RA
    Mov Disord; 1995 Jul; 10(4):424-32. PubMed ID: 7565821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach in the assessment of motor activity in Parkinson's disease.
    van Hilten JJ; Middelkoop HA; Kerkhof GA; Roos RA
    J Neurol Neurosurg Psychiatry; 1991 Nov; 54(11):976-9. PubMed ID: 1800670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity patterns of upper arm muscles in relation to direction of rapid wrist movement in man.
    Aoki F
    Exp Brain Res; 1991; 83(3):679-82. PubMed ID: 2026209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential activation of motor units in the wrist extensor muscles during the tonic vibration reflex in man.
    Romaiguère P; Vedel JP; Azulay JP; Pagni S
    J Physiol; 1991 Dec; 444():645-67. PubMed ID: 1822565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.