These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 7692128)
21. Photosensitized killing of cultured fibroblasts from patients with peroxisomal disorders due to pyrene fatty acid-mediated ultraviolet damage. Hoefler G; Paschke E; Hoefler S; Moser AB; Moser HW J Clin Invest; 1991 Dec; 88(6):1873-9. PubMed ID: 1752949 [TBL] [Abstract][Full Text] [Related]
22. Phytanic acid oxidation: normal activation and transport yet defective alpha-hydroxylation of phytanic acid in peroxisomes from Refsum disease and rhizomelic chondrodysplasia punctata. Pahan K; Khan M; Singh I J Lipid Res; 1996 May; 37(5):1137-43. PubMed ID: 8725164 [TBL] [Abstract][Full Text] [Related]
23. Refsum disease: a defect in the alpha-oxidation of phytanic acid in peroxisomes. Singh I; Pahan K; Singh AK; Barbosa E J Lipid Res; 1993 Oct; 34(10):1755-64. PubMed ID: 7504046 [TBL] [Abstract][Full Text] [Related]
24. Accumulation of pristanic acid (2, 6, 10, 14 tetramethylpentadecanoic acid) in the plasma of patients with generalised peroxisomal dysfunction. Poulos A; Sharp P; Fellenberg AJ; Johnson DW Eur J Pediatr; 1988 Feb; 147(2):143-7. PubMed ID: 2452737 [TBL] [Abstract][Full Text] [Related]
25. Detection of unusual very-long-chain fatty acid and ether lipid derivatives in the fibroblasts and plasma of patients with peroxisomal diseases using liquid chromatography-mass spectrometry. Takashima S; Toyoshi K; Itoh T; Kajiwara N; Honda A; Ohba A; Takemoto S; Yoshida S; Shimozawa N Mol Genet Metab; 2017 Mar; 120(3):255-268. PubMed ID: 28089346 [TBL] [Abstract][Full Text] [Related]
26. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria. Singh H; Beckman K; Poulos A J Biol Chem; 1994 Apr; 269(13):9514-20. PubMed ID: 8144536 [TBL] [Abstract][Full Text] [Related]
27. Cellular oxidation of lignoceric acid is regulated by the subcellular localization of lignoceroyl-CoA ligases. Lazo O; Contreras M; Yoshida Y; Singh AK; Stanley W; Weise M; Singh I J Lipid Res; 1990 Apr; 31(4):583-95. PubMed ID: 2141053 [TBL] [Abstract][Full Text] [Related]
29. Stereochemistry of the peroxisomal branched-chain fatty acid alpha- and beta-oxidation systems in patients suffering from different peroxisomal disorders. Ferdinandusse S; Rusch H; van Lint AE; Dacremont G; Wanders RJ; Vreken P J Lipid Res; 2002 Mar; 43(3):438-44. PubMed ID: 11893780 [TBL] [Abstract][Full Text] [Related]
30. Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. Verhoeven NM; Roe DS; Kok RM; Wanders RJ; Jakobs C; Roe CR J Lipid Res; 1998 Jan; 39(1):66-74. PubMed ID: 9469587 [TBL] [Abstract][Full Text] [Related]
31. Molecular species of phosphatidylcholine containing very long chain fatty acids in human brain: enrichment in X-linked adrenoleukodystrophy brain and diseases of peroxisome biogenesis brain. Sharp P; Johnson D; Poulos A J Neurochem; 1991 Jan; 56(1):30-7. PubMed ID: 1702833 [TBL] [Abstract][Full Text] [Related]
33. Effects of sodium 2-[5-(4-chlorophenyl)pentyl]-oxirane-2-carboxylate (POCA) on fatty acid oxidation in fibroblasts from patients with peroxisomal diseases. Suzuki Y; Shimozawa N; Yajima S; Yamaguchi S; Orii T; Hashimoto T Biochem Pharmacol; 1991 Feb; 41(3):453-6. PubMed ID: 1994902 [TBL] [Abstract][Full Text] [Related]
34. Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency. Abe Y; Honsho M; Nakanishi H; Taguchi R; Fujiki Y Biochim Biophys Acta; 2014 Apr; 1841(4):610-9. PubMed ID: 24418004 [TBL] [Abstract][Full Text] [Related]
35. X-linked adrenoleukodystrophy: defective peroxisomal oxidation of very long chain fatty acids but not of very long chain fatty acyl-CoA esters. Wanders RJ; van Roermund CW; van Wijland MJ; Nijenhuis AA; Tromp A; Schutgens RB; Brouwer-Kelder EM; Schram AW; Tager JM; van den Bosch H Clin Chim Acta; 1987 Jun; 165(2-3):321-9. PubMed ID: 3652454 [TBL] [Abstract][Full Text] [Related]
36. Measurement of peroxisomal fatty acid beta-oxidation in cultured human skin fibroblasts. Wanders RJ; Denis S; Ruiter JP; Schutgens RB; van Roermund CW; Jacobs BS J Inherit Metab Dis; 1995; 18 Suppl 1():113-24. PubMed ID: 9053546 [TBL] [Abstract][Full Text] [Related]
37. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Kruska N; Reiser G Neurobiol Dis; 2011 Aug; 43(2):465-72. PubMed ID: 21570468 [TBL] [Abstract][Full Text] [Related]
38. Accumulation of phytanic acid alpha-oxidation intermediates in Zellweger fibroblasts. Fingerhut R; Schmitz W; Conzelmann E J Inherit Metab Dis; 1993; 16(3):591-4. PubMed ID: 7541878 [No Abstract] [Full Text] [Related]
39. Peroxisomal very long chain fatty acid beta-oxidation activity is determined by the level of adrenodeukodystrophy protein (ALDP) expression. Braiterman LT; Watkins PA; Moser AB; Smith KD Mol Genet Metab; 1999 Feb; 66(2):91-9. PubMed ID: 10068511 [TBL] [Abstract][Full Text] [Related]
40. Pseudo infantile Refsum's disease: catalase-deficient peroxisomal particles with partial deficiency of plasmalogen synthesis and oxidation of fatty acids. Aubourg P; Kremser K; Roland MO; Rocchiccioli F; Singh I Pediatr Res; 1993 Sep; 34(3):270-6. PubMed ID: 7510868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]