BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7692349)

  • 1. Lower thoracic upper lumbar spinocerebellar projections in rats: a complex topography revealed in computer reconstructions of the unfolded anterior lobe.
    Tolbert DL; Alisky JM; Clark BR
    Neuroscience; 1993 Aug; 55(3):755-74. PubMed ID: 7692349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of cuneocerebellar projections in rats: differential topography in the anterior and posterior lobes.
    Tolbert DL; Gutting JC
    Neuroscience; 1997 Sep; 80(2):359-71. PubMed ID: 9284340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections.
    Ji Z; Hawkes R
    Neuroscience; 1994 Aug; 61(4):935-54. PubMed ID: 7530818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe.
    Alisky JM; Tolbert DL
    Neuroscience; 1997 Sep; 80(2):373-88. PubMed ID: 9284341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinocerebellar projections from the lowest lumbar and sacral-caudal segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M
    J Comp Neurol; 1988 Aug; 274(2):239-54. PubMed ID: 2463288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinocerebellar projections from the upper lumbar segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Yaginuma H; Matsushita M
    J Comp Neurol; 1989 Mar; 281(2):298-319. PubMed ID: 2708577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The terminal distribution pattern of spinocerebellar fibers. An anterograde labelling study in the posthatching chick.
    Okado N; Ito R; Homma S
    Anat Embryol (Berl); 1987; 176(2):175-82. PubMed ID: 2441627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinocerebellar projections from the cervical enlargement in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M; Ikeda M
    J Comp Neurol; 1987 Sep; 263(2):223-40. PubMed ID: 3667978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum.
    Berretta S; Perciavalle V; Poppele RE
    J Comp Neurol; 1991 Mar; 305(2):273-81. PubMed ID: 1709180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Yaginuma H; Matsushita M
    J Comp Neurol; 1987 Apr; 258(1):1-27. PubMed ID: 3571531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar projections of the central cervical nucleus in the rat: an anterograde tracing study.
    Matsushita M
    Neurosci Res; 1991 Oct; 12(1):201-16. PubMed ID: 1721115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The projection of spinocerebellar neurons from the sacrococcygeal region of the spinal cord in the cat. An experimental study using anterograde transport of WGA-HRP and degeneration.
    Xu Q; Grant G
    Arch Ital Biol; 1990 Jul; 128(2-4):209-28. PubMed ID: 1702608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M; Yaginuma H
    J Comp Neurol; 1989 Oct; 288(1):19-38. PubMed ID: 2477413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic NMDA receptor blockade or muscimol inhibition of cerebellar cortical neuronal activity alters the development of spinocerebellar afferent topography.
    Tolbert DL; Pittman T; Alisky JM; Clark BR
    Brain Res Dev Brain Res; 1994 Jul; 80(1-2):268-74. PubMed ID: 7525115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M; Tanami T
    J Comp Neurol; 1987 Dec; 266(3):376-97. PubMed ID: 3693617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway formation and the terminal distribution pattern of the spinocerebellar projection in the chick embryo.
    Okado N; Yoshimoto M; Furber SE
    Anat Embryol (Berl); 1987; 176(2):165-74. PubMed ID: 2441626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of spinocerebellar afferent topography following hereditary Purkinje cell degeneration.
    Tolbert DL; Knight TL
    Cerebellum; 2003; 2(1):31-8. PubMed ID: 12882232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic relationship between sagittal Purkinje cell bands revealed by a monoclonal antibody to zebrin I and spinocerebellar projections arising from the central cervical nucleus in the rat.
    Matsushita M; Ragnarson B; Grant G
    Exp Brain Res; 1991; 84(1):133-41. PubMed ID: 1713168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trigeminocerebellar projections to the posterior lobe in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Ikeda M; Matsushita M
    J Comp Neurol; 1992 Feb; 316(2):221-37. PubMed ID: 1374086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projections from the lowest thoracic and upper lumbar segments to the cerebellar cortex in the rat: An anterograde tracing study.
    Matsushita M
    Neurosci Res; 2021 Sep; 170():166-180. PubMed ID: 32668275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.