These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7692349)

  • 21. Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum.
    Ji Z; Jin Q; Vogel MW
    J Comp Neurol; 1997 Feb; 378(3):354-62. PubMed ID: 9034896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spinocerebellar projections to lobules III to V of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase.
    Matsushita M; Hosoya Y
    J Comp Neurol; 1982 Jun; 208(2):127-43. PubMed ID: 6181103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compartmentation of the reeler cerebellum: segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells.
    Vig J; Goldowitz D; Steindler DA; Eisenman LM
    Neuroscience; 2005; 130(3):735-44. PubMed ID: 15590156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convergence of cortico- and cuneopontine projections onto components of the pontocerebellar system in the rat: an anatomical and electrophysiological study.
    Kosinski RJ; Azizi SA; Mihailoff GA
    Exp Brain Res; 1988; 71(3):541-56. PubMed ID: 2458277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topographic spinocerebellar mossy fiber projections are maintained in the lurcher mutant.
    Vogel MW; Prittie J
    J Comp Neurol; 1994 May; 343(2):341-51. PubMed ID: 7517964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the spinocerebellar system in the postnatal rat.
    Arsénio Nunes ML; Sotelo C
    J Comp Neurol; 1985 Jul; 237(3):291-306. PubMed ID: 3840179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection.
    Gravel C; Hawkes R
    J Comp Neurol; 1990 Jan; 291(1):79-102. PubMed ID: 1688891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Origin, course, and laterality of spinocerebellar axons in the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Anat Rec; 1998 Aug; 251(4):528-47. PubMed ID: 9713988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element.
    Arsénio Nunes ML; Sotelo C; Wehrlé R
    J Comp Neurol; 1988 Jul; 273(1):120-36. PubMed ID: 2463274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the anterior lobe: an experimental anatomical study in the cat with retrograde tracing techniques.
    Xu Q; Grant G
    J Comp Neurol; 1994 Jul; 345(2):288-302. PubMed ID: 7523461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collateral projections of neurons from the lower part of the spinal cord to anterior and posterior cerebellar termination areas. A retrograde fluorescent double labeling study in the cat.
    Xu Q; Grant G
    Exp Brain Res; 1988; 72(3):562-76. PubMed ID: 2466682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spinocerebellar projections in the turtle. Observations on their origin and terminal organization.
    Künzle H
    Exp Brain Res; 1983; 53(1):129-41. PubMed ID: 6201378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinocerebellar projections to the vermis of the posterior lobe and the paramedian lobule in the cat, as studied by retrograde transport of horseradish peroxidase.
    Matsushita M; Ikeda M
    J Comp Neurol; 1980 Jul; 192(1):143-62. PubMed ID: 7410609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys.
    Giguere M; Goldman-Rakic PS
    J Comp Neurol; 1988 Nov; 277(2):195-213. PubMed ID: 2466057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Projections from the lowest lumbar and sacral-caudal segments to the cerebellar cortex in the rat: An anterograde tracing study.
    Matsushita M
    Neurosci Res; 2017 Jan; 114():43-54. PubMed ID: 27718359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A glycinergic projection from the ventromedial lower brainstem to spinal motoneurons. An ultrastructural double labeling study in rat.
    Holstege JC; Bongers CM
    Brain Res; 1991 Dec; 566(1-2):308-15. PubMed ID: 1726063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trajectory of spinocerebellar fibers passing through the inferior and superior cerebellar peduncles in the rat spinal cord: a study using horseradish peroxidase with pedunculotomy.
    Yamada J; Shirao K; Kitamura T; Sato H
    J Comp Neurol; 1991 Feb; 304(1):147-60. PubMed ID: 2016410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinocerebellar projections to lobules I and II of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase.
    Matsushita M; Okado N
    J Comp Neurol; 1981 Apr; 197(3):411-24. PubMed ID: 6163798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections.
    Arends JJ; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):221-44. PubMed ID: 1711053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The terminations of corticospinal tract axons in the macaque monkey.
    Ralston DD; Ralston HJ
    J Comp Neurol; 1985 Dec; 242(3):325-37. PubMed ID: 2418074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.