These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7692484)

  • 41. [Influence of vestibular and afferent impulses on the spontaneous activity of interneurons in the spinal cord of cats].
    Truzhennikov AN
    Fiziol Zh SSSR Im I M Sechenova; 1975 Jun; 61(6):945-52. PubMed ID: 1079495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vestibular control of transmission in primary afferents to the lumbar spinal cord.
    Cook WA; Cangiano A; Pompeiano O
    Arch Ital Biol; 1969 Aug; 107(3):296-320. PubMed ID: 4311360
    [No Abstract]   [Full Text] [Related]  

  • 43. Electrophysiologic evidence that neither sprouting nor neuronal hyperactivity occur following long term trigeminal or cervical primary deafferentation.
    Beckermann SB; Kerr FW
    Exp Neurol; 1976 Feb; 50(2):427-38. PubMed ID: 1248559
    [No Abstract]   [Full Text] [Related]  

  • 44. Tachykinin-mediated modulation of sensory neurons, interneurons, and synaptic transmission in the lamprey spinal cord.
    Parker D; Grillner S
    J Neurophysiol; 1996 Dec; 76(6):4031-9. PubMed ID: 8985898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substance P nerve terminals synapse upon negative chronotropic vagal motoneurons.
    Massari VJ; Johnson TA; Llewellyn-Smith IJ; Gatti PJ
    Brain Res; 1994 Oct; 660(2):275-87. PubMed ID: 7529651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlation between sagittal projection zones of climbing and mossy fibre paths in cat cerebellar anterior lobe.
    Ekerot CF; Larson B
    Brain Res; 1973 Dec; 64():446-50. PubMed ID: 4781353
    [No Abstract]   [Full Text] [Related]  

  • 47. Dorsal root potentials following stimulation of cutaneous thin myelinated afferent fibres (group 3).
    Gregor M; Zimmermann M
    Pflugers Arch; 1972; 332():Suppl 332:R103. PubMed ID: 5065823
    [No Abstract]   [Full Text] [Related]  

  • 48. Primary afferent depolarization in the trigeminal spinal nucleus of cats.
    Nakamura Y; Murakami T; Kikuchi M; Kubo Y; Ishimine S
    Exp Brain Res; 1977 Aug; 29(1):45-56. PubMed ID: 891680
    [No Abstract]   [Full Text] [Related]  

  • 49. Ultrastructural immunocytochemical localization of substance P in the cat small intestine.
    Fehér E; Wenger T
    Anat Anz; 1981; 150(1-2):137-43. PubMed ID: 6171182
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional properties of spinal interneurons activated by muscular free nerve endings and their potential contributions to the clasp-knife reflex.
    Cleland CL; Rymer WZ
    J Neurophysiol; 1993 Apr; 69(4):1181-91. PubMed ID: 8492157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Morphological characteristics of the innervation of the cat's knee joint.
    Heppelmann B; Messlinger K; Schmidt RF
    Agents Actions; 1988 Dec; 25(3-4):225-7. PubMed ID: 3218597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synaptic relationship of the neurons containing a metabotropic glutamate receptor, MGluR5, with nociceptive primary afferent and GABAergic terminals in rat spinal superficial laminae.
    Tao YX; Li YQ; Zhao ZQ; Johns RA
    Brain Res; 2000 Sep; 875(1-2):138-43. PubMed ID: 10967307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Depolarization of somesthetic afferents at the level of the Burdach nucleus induced by stimulation of the vago-aortic trunk].
    Gahery Y; Vigier D
    J Physiol (Paris); 1969; 61 Suppl 1():130-1. PubMed ID: 5402004
    [No Abstract]   [Full Text] [Related]  

  • 54. Substance P and somatostatin modulate spinal cord excitability via physiologically different sensory pathways.
    Wiesenfeld-Hallin Z
    Brain Res; 1986 Apr; 372(1):172-5. PubMed ID: 2423189
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution of carotid body chemoreceptor afferents in the medulla of the cat.
    Davies RO; Edwards MW
    Brain Res; 1973 Dec; 64():451-4. PubMed ID: 4360888
    [No Abstract]   [Full Text] [Related]  

  • 57. The lateral reticular nucleus in the cat. I. Mossy fibre distribution in cerebellar cortex.
    Clendenin M; Ekerot CF; Oscarsson O; Rosén I
    Exp Brain Res; 1974; 21(5):473-86. PubMed ID: 4374370
    [No Abstract]   [Full Text] [Related]  

  • 58. GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord.
    Watson AH
    J Comp Neurol; 2003 Sep; 464(4):497-510. PubMed ID: 12900920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The structural correlations in the presynaptic terminals from the dorsal horn of the spinal cord].
    Rusakov DA; Vasilenko DA; Skibo GG
    Neirofiziologiia; 1990; 22(1):132-4. PubMed ID: 2159596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transmitter diversity in carotid body afferent neurons: dopaminergic and peptidergic phenotypes.
    Finley JC; Polak J; Katz DM
    Neuroscience; 1992 Dec; 51(4):973-87. PubMed ID: 1283213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.