BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 7692888)

  • 1. Increased activity of Chromobacterium viscosum lipase in aerosol OT reverse micelles in the presence of nonionic surfactants.
    Yamada Y; Kuboi R; Komasawa I
    Biotechnol Prog; 1993; 9(5):468-72. PubMed ID: 7692888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface.
    Shome A; Roy S; Das PK
    Langmuir; 2007 Apr; 23(8):4130-6. PubMed ID: 17348695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in enzyme activity and stability by addition of low molecular weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl)sulfosuccinate/isooctane reverse micellar system.
    Talukder MM; Takeyama T; Hayashi Y; Wu JC; Kawanishi T; Shimizu N; Ogino C
    Appl Biochem Biotechnol; 2003 Aug; 110(2):101-12. PubMed ID: 14515025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and stability of a Chromobacterium viscosum lipase in reversed micellar and aqueous media.
    Prazeres DM; Garcia FA; Cabral JM
    J Chem Technol Biotechnol; 1992; 53(2):159-64. PubMed ID: 1368011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydration degree of aerosol OT reversed micelles and surfactant concentration in heptane on spectral and catalytic properties of catalase.
    Eryomin AN; Metelitza DI
    Biochemistry (Mosc); 1999 Sep; 64(9):1049-60. PubMed ID: 10521722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in extraction and catalytic activity of Mucor javanicus lipase by modification of AOT reverse micelle.
    Talukder MR; Susanto D; Feng G; Wu J; Choi WJ; Chow Y
    Biotechnol J; 2007 Nov; 2(11):1369-74. PubMed ID: 17639532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dependence of the lipolytic activity of Rhizopus arrhizus lipase on surfactant concentration in Aerosol-OT/isooctane reverse micelles and its relationship to enzyme structure.
    Brown ED; Yada RY; Marangoni AG
    Biochim Biophys Acta; 1993 Jan; 1161(1):66-72. PubMed ID: 7678504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric constraints at the surfactant headgroup: effect on lipase activity in cationic reverse micelles.
    Mitra RN; Dasgupta A; Das D; Roy S; Debnath S; Das PK
    Langmuir; 2005 Dec; 21(26):12115-23. PubMed ID: 16342982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AOT/isooctane reverse micelles with a microaqueous core act as protective shells for enhancing the thermal stability of Chromobacterium viscosum lipase.
    Hong SC; Park KM; Son YH; Jung HS; Kim K; Choi SJ; Chang PS
    Food Chem; 2015 Jul; 179():263-9. PubMed ID: 25722164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles.
    Chen N; Fan JB; Xiang J; Chen J; Liang Y
    Biochim Biophys Acta; 2006 Jun; 1764(6):1029-35. PubMed ID: 16713409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-pressure lipase-catalyzed production of mono- and diglycerides with and without N-butane and AOT surfactant.
    Valério A; Fiametti KG; Rovani S; Treichel H; de Oliveira D; Oliveira JV
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1789-96. PubMed ID: 19641856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant interference on lipase catalysed reactions in microemulsions.
    Skagerlind P; Jansson M; Hult K
    J Chem Technol Biotechnol; 1992; 54(3):277-82. PubMed ID: 1382460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fluorescence of hemoproteins in reversed micelles of surfactants in octanes].
    Eremin AN; Metelitsa DI
    Biokhimiia; 1984 Dec; 49(12):1947-54. PubMed ID: 6084521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A procedure for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes in reverse micellar solutions. I. Hydrolysis of 2-naphthyl acetate catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulphosuccinate (AOT)/buffer/heptane.
    Aguilar LF; Abuin E; Lissi E
    Arch Biochem Biophys; 2001 Apr; 388(2):231-6. PubMed ID: 11368159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher order structure of proteins solubilized in AOT reverse micelles.
    Naoe K; Noda K; Kawagoe M; Imai M
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):179-85. PubMed ID: 15542322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of chemical modification of lipase on the regulation of its lipolytic activity in reversed micelles].
    Pavlenko IM; Kliachko NL; Levashov AV
    Bioorg Khim; 2005; 31(6):593-601. PubMed ID: 16363131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relaxation phenomena in systems of protein-containing reverse micelles of surfactants in organic solvents].
    Kabanov AV; Nametkin SN; Matveeva EG; Kliachko NL; Martinek K
    Mol Biol (Mosk); 1988; 22(2):473-84. PubMed ID: 2455866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions.
    Rees GD; Robinson BH; Stephenson GR
    Biochim Biophys Acta; 1995 Aug; 1257(3):239-48. PubMed ID: 7544159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and kinetic studies of lipases solubilized in reverse micelles.
    Walde P; Han D; Luisi PL
    Biochemistry; 1993 Apr; 32(15):4029-34. PubMed ID: 7682440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.