These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7693014)

  • 1. Stimulation of glycogenolysis in astrocytes by fluoxetine, an antidepressant acting like 5-HT.
    Zhang X; Peng L; Chen Y; Hertz L
    Neuroreport; 1993 Sep; 4(11):1235-8. PubMed ID: 7693014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration.
    Kong EK; Peng L; Chen Y; Yu AC; Hertz L
    Neurochem Res; 2002 Feb; 27(1-2):113-20. PubMed ID: 11930908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence that fluoxetine interacts with a 5-HT2C receptor in glial cells.
    Chen Y; Peng L; Zhang X; Stolzenburg JU; Hertz L
    Brain Res Bull; 1995; 38(2):153-9. PubMed ID: 7583341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic antidepressant treatment alters serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons.
    Zhong P; Yan Z
    Neuroscience; 2004; 129(1):65-73. PubMed ID: 15489029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β1-adrenoceptor-stimulated lactate production in cultured astrocytes is predominantly glycogen-independent.
    Jiang X; Challiss J; Glynn P
    Biochem Pharmacol; 2020 Jul; 177():114035. PubMed ID: 32413424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glycogenolysis in transformed astrocytes in vitro.
    Cummins CJ; Lust WD; Passonneau JV
    J Neurochem; 1983 Jan; 40(1):137-44. PubMed ID: 6294245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis.
    Müller MS; Fox R; Schousboe A; Waagepetersen HS; Bak LK
    Glia; 2014 Apr; 62(4):526-34. PubMed ID: 24464850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na(+)-dependent, fluoxetine-sensitive serotonin uptake by astrocytes tissue-printed from rat cerebral cortex.
    Dave V; Kimelberg HK
    J Neurosci; 1994 Aug; 14(8):4972-86. PubMed ID: 8046464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant defense against antidepressants in C6 and 1321N1 cells.
    Slamon ND; Pentreath VW
    Chem Biol Interact; 2000 Jul; 127(3):181-99. PubMed ID: 10967317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pharmacologic profile of fluoxetine.
    Stark P; Fuller RW; Wong DT
    J Clin Psychiatry; 1985 Mar; 46(3 Pt 2):7-13. PubMed ID: 3871767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S 15535, a novel benzodioxopiperazine ligand of serotonin (5-HT)1A receptors: I. Interaction with cloned human (h)5-HT1A, dopamine hD2/hD3 and h alpha2A-adrenergic receptors in relation to modulation of cortical monoamine release and activity in models of potential antidepressant activity.
    Millan MJ; Newman-Tancredi A; Rivet JM; Brocco M; Lacroix P; Audinot V; Cistarelli L; Gobert A
    J Pharmacol Exp Ther; 1997 Jul; 282(1):132-47. PubMed ID: 9223549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytic glycogenolysis: mechanisms and functions.
    Hertz L; Xu J; Song D; Du T; Li B; Yan E; Peng L
    Metab Brain Dis; 2015 Feb; 30(1):317-33. PubMed ID: 24744118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of neurotransmitters on astrocyte glycogen stores in vitro.
    Cambray-Deakin M; Pearce B; Morrow C; Murphy S
    J Neurochem; 1988 Dec; 51(6):1852-7. PubMed ID: 2903222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of long-term administration of antidepressant drugs on the 5-HT3 receptors that enhance the electrically evoked release of [3H]noradrenaline in the rat hippocampus.
    Mongeau R; De Montigny C; Blier P
    Eur J Pharmacol; 1994 Dec; 271(1):121-9. PubMed ID: 7698195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic fluoxetine administration increases expression of the L-channel gene Cav1.2 in astrocytes from the brain of treated mice and in culture and augments K(+)-induced increase in [Ca(2+)]i.
    Du T; Liang C; Li B; Hertz L; Peng L
    Cell Calcium; 2014 Mar; 55(3):166-74. PubMed ID: 24513410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential Contributions of Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram in the SERT Met172 Mouse.
    Nackenoff AG; Moussa-Tooks AB; McMeekin AM; Veenstra-VanderWeele J; Blakely RD
    Neuropsychopharmacology; 2016 Jun; 41(7):1733-41. PubMed ID: 26514584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and binding of serotonin by primary cultures of mouse astrocytes.
    Tardy M; Costa MF; Fages C; Bardakdjian J; Gonnard P
    Dev Neurosci; 1982; 5(1):19-26. PubMed ID: 6286269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin regulation of nerve growth factor synthesis in neonatal and adult astrocytes: comparison to the beta-adrenergic agonist isoproterenol.
    Krzan M; Wu VW; Schwartz JP
    J Neurosci Res; 2001 May; 64(3):261-7. PubMed ID: 11319770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes.
    Subbarao KV; Hertz L
    Brain Res; 1990 Dec; 536(1-2):220-6. PubMed ID: 2085749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonin enhances the beta-adrenergic response in rat brain cortical slices.
    Morin D; Sapena R; Zini R; Tillement JP
    Eur J Pharmacol; 1992 Mar; 225(3):273-4. PubMed ID: 1325368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.