These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

664 related articles for article (PubMed ID: 7693298)

  • 1. Neurochemical substrates of rigidity and chorea in Huntington's disease.
    Storey E; Beal MF
    Brain; 1993 Oct; 116 ( Pt 5)():1201-22. PubMed ID: 7693298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal and nigral neuron subpopulations in rigid Huntington's disease: implications for the functional anatomy of chorea and rigidity-akinesia.
    Albin RL; Reiner A; Anderson KD; Penney JB; Young AB
    Ann Neurol; 1990 Apr; 27(4):357-65. PubMed ID: 1972318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease.
    Glass M; Dragunow M; Faull RL
    Neuroscience; 2000; 97(3):505-19. PubMed ID: 10828533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pallidal GABA and chorea in Huntington's disease.
    Pearson SJ; Heathfield KW; Reynolds GP
    J Neural Transm Gen Sect; 1990; 81(3):241-6. PubMed ID: 2144428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington's disease using high resolution image analysis.
    Sapp E; Ge P; Aizawa H; Bird E; Penney J; Young AB; Vonsattel JP; DiFiglia M
    Neuroscience; 1995 Jan; 64(2):397-404. PubMed ID: 7535402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington's disease.
    Allen KL; Waldvogel HJ; Glass M; Faull RL
    J Chem Neuroanat; 2009 Jul; 37(4):266-81. PubMed ID: 19481011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical studies of substance P and leucine-enkephalin in Huntington's disease.
    Marshall PE; Landis DM; Zalneraitis EL
    Brain Res; 1983 Dec; 289(1-2):11-26. PubMed ID: 6198034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on neurotransmitter markers and striatal neuronal cell density in Huntington's disease and dentatorubropallidoluysian atrophy.
    Kanazawa I; Sasaki H; Muramoto O; Matsushita M; Mizutani T; Iwabuchi K; Ikeda T; Takahata N
    J Neurol Sci; 1985 Sep; 70(2):151-65. PubMed ID: 2865338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal D1 and D2 receptor binding in patients with Huntington's disease and other choreas. A PET study.
    Turjanski N; Weeks R; Dolan R; Harding AE; Brooks DJ
    Brain; 1995 Jun; 118 ( Pt 3)():689-96. PubMed ID: 7600086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A detailed examination of substance P in pathologically graded cases of Huntington's disease.
    Beal MF; Ellison DW; Mazurek MF; Swartz KJ; Malloy JR; Bird ED; Martin JB
    J Neurol Sci; 1988 Mar; 84(1):51-61. PubMed ID: 2452859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease.
    Alberch J; Pérez-Navarro E; Canals JM
    Brain Res Bull; 2002 Apr; 57(6):817-22. PubMed ID: 12031278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bradykinesia is not a "systematic" feature of adult-onset Huntington's disease; implications for basal ganglia pathophysiology.
    Fenney A; Jog MS; Duval C
    Brain Res; 2008 Feb; 1193():67-75. PubMed ID: 18177845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia.
    Bird ED; Iversen LL
    Brain; 1974 Sep; 97(3):457-72. PubMed ID: 4157009
    [No Abstract]   [Full Text] [Related]  

  • 14. The diversity of GABA(A) receptor subunit distribution in the normal and Huntington's disease human brain.
    Waldvogel HJ; Faull RL
    Adv Pharmacol; 2015; 73():223-64. PubMed ID: 25637443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurochemical findings in Huntington's chorea.
    Bird ED; Iversen LL
    Essays Neurochem Neuropharmacol; 1977; 1():177-95. PubMed ID: 152197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic receptor subtypes in the basal ganglia of patients with Huntington's chorea and Parkinson's disease.
    Waeber C; Rigo M; Chinaglia G; Probst A; Palacios JM
    Synapse; 1991 Aug; 8(4):270-80. PubMed ID: 1656540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington's disease.
    Morton AJ; Nicholson LF; Faull RL
    Neuroscience; 1993 Mar; 53(1):159-68. PubMed ID: 7682296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurochemical alterations in Huntington's chorea: a study of post-mortem brain tissue.
    Spokes EG
    Brain; 1980 Mar; 103(1):179-210. PubMed ID: 6102490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonism in the lentiform complex. The site of drug action and a hypothesis for the neural mechanisms of chorea.
    Crossman AR; Mitchell IJ; Sambrook MA; Jackson A
    Brain; 1988 Oct; 111 ( Pt 5)():1211-33. PubMed ID: 3179691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical studies of substance P and Met-enkephalin in the basal ganglia and substantia nigra in Huntington's, Parkinson's and Alzheimer's diseases.
    Grafe MR; Forno LS; Eng LF
    J Neuropathol Exp Neurol; 1985 Jan; 44(1):47-59. PubMed ID: 2578185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.