These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 7693653)
21. Regulation of the rpoN, ORF102 and ORF154 genes in Pseudomonas putida. Köhler T; Alvarez JF; Harayama S FEMS Microbiol Lett; 1994 Jan; 115(2-3):177-84. PubMed ID: 8138132 [TBL] [Abstract][Full Text] [Related]
22. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. Marqués S; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1994 May; 176(9):2517-24. PubMed ID: 8169200 [TBL] [Abstract][Full Text] [Related]
23. TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Vedler E; Kõiv V; Heinaru A Gene; 2000 Mar; 245(1):161-8. PubMed ID: 10713456 [TBL] [Abstract][Full Text] [Related]
24. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Endoh T; Habe H; Nojiri H; Yamane H; Omori T Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012 [TBL] [Abstract][Full Text] [Related]
25. Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. Ng LC; Poh CL; Shingler V J Bacteriol; 1995 Mar; 177(6):1485-90. PubMed ID: 7883704 [TBL] [Abstract][Full Text] [Related]
26. Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. Lacal J; Guazzaroni ME; Busch A; Krell T; Ramos JL J Mol Biol; 2008 Feb; 376(2):325-37. PubMed ID: 18166197 [TBL] [Abstract][Full Text] [Related]
27. Activation of the catBCA promoter: probing the interaction of CatR and RNA polymerase through in vitro transcription. Chugani SA; Parsek MR; Hershberger CD; Murakami K; Ishihama A; Chakrabarty AM J Bacteriol; 1997 Apr; 179(7):2221-7. PubMed ID: 9079907 [TBL] [Abstract][Full Text] [Related]
28. Upstream binding sequences of the XylR activator protein and integration host factor in the xylS gene promoter region of the Pseudomonas TOL plasmid. Holtel A; Timmis KN; Ramos JL Nucleic Acids Res; 1992 Apr; 20(7):1755-62. PubMed ID: 1579469 [TBL] [Abstract][Full Text] [Related]
29. Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon. Caslake LF; Ashraf SI; Summers AO J Bacteriol; 1997 Mar; 179(5):1787-95. PubMed ID: 9045842 [TBL] [Abstract][Full Text] [Related]
30. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. Coco WM; Rothmel RK; Henikoff S; Chakrabarty AM J Bacteriol; 1993 Jan; 175(2):417-27. PubMed ID: 8419291 [TBL] [Abstract][Full Text] [Related]
31. PcaR-mediated activation and repression of pca genes from Pseudomonas putida are propagated by its binding to both the -35 and the -10 promoter elements. Guo Z; Houghton JE Mol Microbiol; 1999 Apr; 32(2):253-63. PubMed ID: 10231483 [TBL] [Abstract][Full Text] [Related]
32. sigma54-RNA polymerase controls sigma70-dependent transcription from a non-overlapping divergent promoter. Johansson LU; Solera D; Bernardo LM; Moscoso JA; Shingler V Mol Microbiol; 2008 Nov; 70(3):709-23. PubMed ID: 18786144 [TBL] [Abstract][Full Text] [Related]
33. Differential DNA bending introduced by the Pseudomonas putida LysR-type regulator, CatR, at the plasmid-borne pheBA and chromosomal catBC promoters. Parsek MR; Kivisaar M; Chakrabarty AM Mol Microbiol; 1995 Mar; 15(5):819-28. PubMed ID: 7596284 [TBL] [Abstract][Full Text] [Related]
34. The Streptomyces galP1 promoter has a novel RNA polymerase recognition sequence and is transcribed by a new form of RNA polymerase in vitro. Brawner ME; Mattern SG; Babcock MJ; Westpheling J J Bacteriol; 1997 May; 179(10):3222-31. PubMed ID: 9150217 [TBL] [Abstract][Full Text] [Related]
35. A CysB-regulated and sigma54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. Endoh T; Habe H; Yoshida T; Nojiri H; Omori T Microbiology (Reading); 2003 Apr; 149(Pt 4):991-1000. PubMed ID: 12686641 [TBL] [Abstract][Full Text] [Related]
36. Upstream regulatory sequence for transcriptional activator XylR in the first operon of xylene metabolism on the TOL plasmid. Inouye S; Gomada M; Sangodkar UM; Nakazawa A; Nakazawa T J Mol Biol; 1990 Nov; 216(2):251-60. PubMed ID: 2174974 [TBL] [Abstract][Full Text] [Related]
37. Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation. Carl B; Arnold A; Hauer B; Fetzner S Gene; 2004 Apr; 331():177-88. PubMed ID: 15094204 [TBL] [Abstract][Full Text] [Related]
38. Expression and purification of the cynR regulatory gene product: CynR is a DNA-binding protein. Lamblin AF; Fuchs JA J Bacteriol; 1993 Dec; 175(24):7990-9. PubMed ID: 8253686 [TBL] [Abstract][Full Text] [Related]
39. In vitro activities of an N-terminal truncated form of XylR, a sigma 54-dependent transcriptional activator of Pseudomonas putida. Pérez-Martín J; de Lorenzo V J Mol Biol; 1996 May; 258(4):575-87. PubMed ID: 8636993 [TBL] [Abstract][Full Text] [Related]
40. Regulation of the transcription of a cluster of Bacillus subtilis spore coat genes. Zhang J; Ichikawa H; Halberg R; Kroos L; Aronson AI J Mol Biol; 1994 Jul; 240(5):405-15. PubMed ID: 7519271 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]