BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7693667)

  • 1. Selective modulation by cGMP of the K+ channel activated by speract.
    Cook SP; Babcock DF
    J Biol Chem; 1993 Oct; 268(30):22402-7. PubMed ID: 7693667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of Ca2+ permeability by cAMP is coordinated through the pHi increase induced by speract.
    Cook SP; Babcock DF
    J Biol Chem; 1993 Oct; 268(30):22408-13. PubMed ID: 7693668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participation of a K(+) channel modulated directly by cGMP in the speract-induced signaling cascade of strongylocentrotus purpuratus sea urchin sperm.
    Galindo BE; Beltrán C; Cragoe EJ; Darszon A
    Dev Biol; 2000 May; 221(2):285-94. PubMed ID: 10790326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early persistent activation of sperm K+ channels by the egg peptide speract.
    Babcock DF; Bosma MM; Battaglia DE; Darszon A
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):6001-5. PubMed ID: 1631086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses.
    Cook SP; Brokaw CJ; Muller CH; Babcock DF
    Dev Biol; 1994 Sep; 165(1):10-9. PubMed ID: 8088428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sea urchin egg jelly peptide induces a cGMP-mediated decrease in sperm intracellular Ca(2+) before its increase.
    Nishigaki T; Wood CD; Tatsu Y; Yumoto N; Furuta T; Elias D; Shiba K; Baba SA; Darszon A
    Dev Biol; 2004 Aug; 272(2):376-88. PubMed ID: 15282155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speract induces calcium oscillations in the sperm tail.
    Wood CD; Darszon A; Whitaker M
    J Cell Biol; 2003 Apr; 161(1):89-101. PubMed ID: 12695500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of intracellular [Ca2+] in sea urchin sperm by the egg peptide speract. Evidence that increased intracellular Ca2+ is coupled to Na+ entry and increased intracellular pH.
    Schackmann RW; Chock PB
    J Biol Chem; 1986 Jul; 261(19):8719-28. PubMed ID: 2424902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the voltage-sensitive Na+/H+ exchange in sea urchin spermatozoa through membrane potential changes induced by the egg peptide speract.
    Lee HC; Garbers DL
    J Biol Chem; 1986 Dec; 261(34):16026-32. PubMed ID: 2430965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of calcium-activated potassium channels and cyclic nucleotides on pulmonary vasoreactivity to serotonin.
    Barman SA
    Am J Physiol; 1997 Jul; 273(1 Pt 1):L142-7. PubMed ID: 9252551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic bases of the membrane potential and intracellular pH changes induced by speract in swollen sea urchin sperm.
    Reynaud E; De de La Torre L; Zapata O; Liévano A; Darszon A
    FEBS Lett; 1993 Aug; 329(1-2):210-4. PubMed ID: 8354397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve growth factor increases the cyclic GMP level and activates the cyclic GMP phosphodiesterase in PC12 cells.
    Laasberg T; Pihlak A; Neuman T; Paves H; Saarma M
    FEBS Lett; 1988 Nov; 239(2):367-70. PubMed ID: 2460374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potential regulates sea urchin sperm adenylylcyclase.
    Beltrán C; Zapata O; Darszon A
    Biochemistry; 1996 Jun; 35(23):7591-8. PubMed ID: 8652541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of slow component of delayed rectifier K(+) current by cGMP via two distinct mechanisms: inhibition of phosphodiesterase 3 and activation of protein kinase G.
    Shimizu K; Shintani Y; Ding WG; Matsuura H; Bamba T
    Br J Pharmacol; 2002 Sep; 137(1):127-37. PubMed ID: 12183338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissimilar cyclic nucleotide phosphodiesterase activities in subcellular fractions from normal and SV40-transformed WI-38 fibroblasts.
    Nemecek GM; Butcher RW
    J Cyclic Nucleotide Res; 1979 Dec; 5(6):449-61. PubMed ID: 94064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P; Lugnier C; Demesy-Waeldele F; Stoclet JC
    Biochem Pharmacol; 1987 Nov; 36(22):3965-72. PubMed ID: 2825708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of rat thymocyte proliferative response through the inhibition of different cyclic nucleotide phosphodiesterase isoforms by means of selective inhibitors and cGMP-elevating agents.
    Marcoz P; Prigent AF; Lagarde M; Nemoz G
    Mol Pharmacol; 1993 Nov; 44(5):1027-35. PubMed ID: 8246905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis.
    Torphy TJ; Zhou HL; Burman M; Huang LB
    Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional identification of phosphodiesterase activity in human trabecular meshwork cells.
    Zhou L; Thompson WJ; Potter DE
    J Ocul Pharmacol Ther; 2000 Aug; 16(4):317-22. PubMed ID: 10977127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zn(2+) induces hyperpolarization by activation of a K(+) channel and increases intracellular Ca(2+) and pH in sea urchin spermatozoa.
    Beltrán C; Rodríguez-Miranda E; Granados-González G; de De la Torre LG; Nishigaki T; Darszon A
    Dev Biol; 2014 Oct; 394(1):15-23. PubMed ID: 25092071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.