BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7693691)

  • 1. Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase.
    Cai H; Bloom LB; Eritja R; Goodman MF
    J Biol Chem; 1993 Nov; 268(31):23567-72. PubMed ID: 7693691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide insertion and primer extension at abasic template sites in different sequence contexts.
    Goodman MF; Cai H; Bloom LB; Eritja R
    Ann N Y Acad Sci; 1994 Jul; 726():132-42; discussion 142-3. PubMed ID: 8092671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates.
    Yu H; Goodman MF
    J Biol Chem; 1992 May; 267(15):10888-96. PubMed ID: 1375233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase.
    Mendelman LV; Petruska J; Goodman MF
    J Biol Chem; 1990 Feb; 265(4):2338-46. PubMed ID: 1688852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base mispair extension kinetics. Binding of avian myeloblastosis reverse transcriptase to matched and mismatched base pair termini.
    Creighton S; Huang MM; Cai H; Arnheim N; Goodman MF
    J Biol Chem; 1992 Feb; 267(4):2633-9. PubMed ID: 1370828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans-lesion synthesis and RNaseH activity by reverse transcriptases on a true abasic RNA template.
    Küpfer PA; Crey-Desbiolles C; Leumann CJ
    Nucleic Acids Res; 2007; 35(20):6846-53. PubMed ID: 17932068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the fidelity of copying 5-methylcytosine and cytosine at a defined DNA template site.
    Shen JC; Creighton S; Jones PA; Goodman MF
    Nucleic Acids Res; 1992 Oct; 20(19):5119-25. PubMed ID: 1383939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nearest neighbor influences on DNA polymerase insertion fidelity.
    Mendelman LV; Boosalis MS; Petruska J; Goodman MF
    J Biol Chem; 1989 Aug; 264(24):14415-23. PubMed ID: 2474545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abasic translesion synthesis by DNA polymerase beta violates the "A-rule". Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts.
    Efrati E; Tocco G; Eritja R; Wilson SH; Goodman MF
    J Biol Chem; 1997 Jan; 272(4):2559-69. PubMed ID: 8999973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base sequence dependence of in vitro translesional DNA replication past a bulky lesion catalyzed by the exo- Klenow fragment of Pol I.
    Zhuang P; Kolbanovskiy A; Amin S; Geacintov NE
    Biochemistry; 2001 Jun; 40(22):6660-9. PubMed ID: 11380261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition and binding of template-primers containing defined abasic sites by Drosophila DNA polymerase alpha holoenzyme.
    Ng L; Weiss SJ; Fisher PA
    J Biol Chem; 1989 Aug; 264(22):13018-23. PubMed ID: 2502545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide insertion kinetics opposite abasic lesions in DNA.
    Randall SK; Eritja R; Kaplan BE; Petruska J; Goodman MF
    J Biol Chem; 1987 May; 262(14):6864-70. PubMed ID: 3571289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates.
    Boyer JC; Bebenek K; Kunkel TA
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6919-23. PubMed ID: 1379727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases.
    Fuentes GM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1996 May; 24(9):1719-26. PubMed ID: 8649991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of DNA by human immunodeficiency virus reverse transcriptase is preferentially blocked at template oligo(deoxyadenosine) tracts.
    Williams KJ; Loeb LA; Fry M
    J Biol Chem; 1990 Oct; 265(30):18682-9. PubMed ID: 1698789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient extension of a misaligned tRNA-primer during replication of the HIV-1 retrovirus.
    Das AT; Berkhout B
    Nucleic Acids Res; 1995 Apr; 23(8):1319-26. PubMed ID: 7538660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient misincorporation by avian myeloblastosis virus reverse transcriptase in the presence of a single deoxyribonucleoside triphosphate.
    Champoux JJ
    J Mol Appl Genet; 1984; 2(5):454-64. PubMed ID: 6207255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of RNA cleavage during RNA-directed DNA synthesis by human immunodeficiency and avian myeloblastosis virus reverse transcriptases.
    DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1994 Sep; 22(18):3793-800. PubMed ID: 7524028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.