BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 7693692)

  • 21. Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli.
    Hizi A; Tal R; Hughes SH
    Virology; 1991 Jan; 180(1):339-46. PubMed ID: 1701948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of RNA strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase.
    Kelleher CD; Champoux JJ
    J Biol Chem; 1998 Apr; 273(16):9976-86. PubMed ID: 9545343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of RNase H activity and viral replication by single mutations in the 3' region of Moloney murine leukemia virus reverse transcriptase.
    Repaske R; Hartley JW; Kavlick MF; O'Neill RR; Austin JB
    J Virol; 1989 Mar; 63(3):1460-4. PubMed ID: 2464706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNase H cleavage of tRNAPro mediated by M-MuLV and HIV-1 reverse transcriptases.
    Smith CM; Potts WB; Smith JS; Roth MJ
    Virology; 1997 Mar; 229(2):437-46. PubMed ID: 9126256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase.
    Ben-Artzi H; Zeelon E; Gorecki M; Panet A
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):927-31. PubMed ID: 1371014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insight into the mechanism of the stabilization of moloney murine leukaemia virus reverse transcriptase by eliminating RNase H activity.
    Mizuno M; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2010; 74(2):440-2. PubMed ID: 20139597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNase H activity: structure, specificity, and function in reverse transcription.
    Schultz SJ; Champoux JJ
    Virus Res; 2008 Jun; 134(1-2):86-103. PubMed ID: 18261820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA degradation and primer selection by Moloney murine leukemia virus reverse transcriptase contribute to the accuracy of plus strand initiation.
    Kelleher CD; Champoux JJ
    J Biol Chem; 2000 Apr; 275(17):13061-70. PubMed ID: 10777611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase.
    Blain SW; Goff SP
    J Virol; 1995 Jul; 69(7):4440-52. PubMed ID: 7539510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III.
    Hostomsky Z; Hudson GO; Rahmati S; Hostomska Z
    Nucleic Acids Res; 1992 Nov; 20(21):5819-24. PubMed ID: 1280810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An active recombinant p15 RNase H domain is functionally distinct from the RNase H domain associated with human immunodeficiency virus type 1 reverse transcriptase.
    Evans DB; Fan N; Swaney SM; Tarpley WG; Sharma SK
    J Biol Chem; 1994 Aug; 269(34):21741-7. PubMed ID: 7520442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity.
    Zhan X; Crouch RJ
    J Biol Chem; 1997 Aug; 272(35):22023-9. PubMed ID: 9268341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal binding and activation of the ribonuclease H domain from moloney murine leukemia virus.
    Goedken ER; Marqusee S
    Protein Eng; 1999 Nov; 12(11):975-80. PubMed ID: 10585503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain.
    Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM
    J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of Moloney murine leukemia virus reverse transcriptase mutations on RNase H activity in Mg2+ and Mn2+.
    Blain SW; Goff SP
    J Biol Chem; 1996 Jan; 271(3):1448-54. PubMed ID: 8576137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substitution of Asp114 or Arg116 in the fingers domain of moloney murine leukemia virus reverse transcriptase affects interactions with the template-primer resulting in decreased processivity.
    Gu J; Villanueva RA; Snyder CS; Roth MJ; Georgiadis MM
    J Mol Biol; 2001 Jan; 305(2):341-59. PubMed ID: 11124910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)-primer excision.
    Furfine ES; Reardon JE
    Biochemistry; 1991 Jul; 30(29):7041-6. PubMed ID: 1713059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of the ribonuclease H activity of human immunodeficiency virus 1 reverse transcriptase.
    Hizi A; Hughes SH; Shaharabany M
    Virology; 1990 Apr; 175(2):575-80. PubMed ID: 1691564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the ribonuclease H activity of HIV-1 reverse transcriptase using RNA.DNA hybrid substrates derived from the gag region of HIV-1.
    Mizrahi V
    Biochemistry; 1989 Nov; 28(23):9088-94. PubMed ID: 2481501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Requirements for the catalysis of strand transfer synthesis by retroviral DNA polymerases.
    Buiser RG; DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    J Biol Chem; 1991 Jul; 266(20):13103-9. PubMed ID: 1712774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.