BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7694035)

  • 1. Expression of gene 19 of the conjugative plasmid R1 is controlled by RNase III.
    Koraimann G; Schroller C; Graus H; Angerer D; Teferle K; Högenauer G
    Mol Microbiol; 1993 Aug; 9(4):717-27. PubMed ID: 7694035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs.
    Gerdes K; Nielsen A; Thorsted P; Wagner EG
    J Mol Biol; 1992 Aug; 226(3):637-49. PubMed ID: 1380562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB.
    Afonyushkin T; Vecerek B; Moll I; Bläsi U; Kaberdin VR
    Nucleic Acids Res; 2005; 33(5):1678-89. PubMed ID: 15781494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro analysis of mRNA processing by RNase E in the pap operon of Escherichia coli.
    Naureckiene S; Uhlin BE
    Mol Microbiol; 1996 Jul; 21(1):55-68. PubMed ID: 8843434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between mRNA synthesis and mRNA stability in Escherichia coli.
    Chow J; Dennis PP
    Mol Microbiol; 1994 Mar; 11(5):919-31. PubMed ID: 7517486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli.
    Altuvia Y; Bar A; Reiss N; Karavani E; Argaman L; Margalit H
    Nucleic Acids Res; 2018 Nov; 46(19):10380-10394. PubMed ID: 30113670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Escherichia coli RNase E and RNase III in the processing of the citQRP operon mRNA from Lactococcus lactis biovar diacetylactis.
    Drider D; Santos JM; García-Quintáns N; Arraiano CM; López P
    J Mol Microbiol Biotechnol; 1999 Nov; 1(2):337-46. PubMed ID: 10943565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNase E processing of essential cell division genes mRNA in Escherichia coli.
    Cam K; Rome G; Krisch HM; Bouché JP
    Nucleic Acids Res; 1996 Aug; 24(15):3065-70. PubMed ID: 8760895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of replication of plasmid R1: the duplex between the antisense RNA, CopA, and its target, CopT, is processed specifically in vivo and in vitro by RNase III.
    Blomberg P; Wagner EG; Nordström K
    EMBO J; 1990 Jul; 9(7):2331-40. PubMed ID: 1694128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved sequence element in ribonuclease III processing signals is not required for accurate in vitro enzymatic cleavage.
    Chelladurai BS; Li H; Nicholson AW
    Nucleic Acids Res; 1991 Apr; 19(8):1759-66. PubMed ID: 1709490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression.
    Dasgupta S; Fernandez L; Kameyama L; Inada T; Nakamura Y; Pappas A; Court DL
    Mol Microbiol; 1998 May; 28(3):629-40. PubMed ID: 9632264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and regulation of the rnc and pdxJ operons of Escherichia coli.
    Matsunaga J; Dyer M; Simons EL; Simons RW
    Mol Microbiol; 1996 Dec; 22(5):977-89. PubMed ID: 8971718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleolytic inactivation and degradation of the RNase III processed pnp message encoding polynucleotide phosphorylase of Escherichia coli.
    Hajnsdorf E; Carpousis AJ; Régnier P
    J Mol Biol; 1994 Jun; 239(4):439-54. PubMed ID: 7516438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.
    Kim K; Sim SH; Jeon CO; Lee Y; Lee K
    FEMS Microbiol Lett; 2011 Feb; 315(1):30-7. PubMed ID: 21133991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNase III autoregulation: structure and function of rncO, the posttranscriptional "operator".
    Matsunaga J; Simons EL; Simons RW
    RNA; 1996 Dec; 2(12):1228-40. PubMed ID: 8972772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutation in an Escherichia coli ribosomal RNA operon that blocks the production of precursor 23 S ribosomal RNA by RNase III in vivo and in vitro.
    Stark MJ; Gourse RL; Jemiolo DK; Dahlberg AE
    J Mol Biol; 1985 Mar; 182(2):205-16. PubMed ID: 2582139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli.
    Lee M; Joo M; Sim M; Sim SH; Kim HL; Lee J; Ryu M; Yeom JH; Hahn Y; Ha NC; Cho JC; Lee K
    Sci Rep; 2019 Nov; 9(1):17257. PubMed ID: 31754158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage by RNase III in the transcripts of the met Y-nus-A-infB operon of Escherichia coli releases the tRNA and initiates the decay of the downstream mRNA.
    Régnier P; Grunberg-Manago M
    J Mol Biol; 1989 Nov; 210(2):293-302. PubMed ID: 2481042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of endoribonucleases in the regulation of RNase R.
    Cairrão F; Arraiano CM
    Biochem Biophys Res Commun; 2006 May; 343(3):731-7. PubMed ID: 16563345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.