These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7695574)

  • 1. New methods for measuring adipose tissue distribution in children.
    Sarría A; Ruiz PJ; Bueno M
    Bibl Nutr Dieta; 1994; (51):18-25. PubMed ID: 7695574
    [No Abstract]   [Full Text] [Related]  

  • 2. Research techniques for body composition assessment.
    Jensen MD
    J Am Diet Assoc; 1992 Apr; 92(4):454-60. PubMed ID: 1556347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of body composition in 8-11 year old children by bioelectrical impedance.
    Deurenberg P; van der Kooy K; Paling A; Withagen P
    Eur J Clin Nutr; 1989 Sep; 43(9):623-9. PubMed ID: 2606093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of body composition from bioelectric impedance of body segments.
    Baumgartner RN; Chumlea WC; Roche AF
    Am J Clin Nutr; 1989 Aug; 50(2):221-6. PubMed ID: 2756908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity, and food intake.
    Goran MI
    Pediatrics; 1998 Mar; 101(3 Pt 2):505-18. PubMed ID: 12224657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring body fat distribution and content in humans.
    Goodpaster BH
    Curr Opin Clin Nutr Metab Care; 2002 Sep; 5(5):481-7. PubMed ID: 12172470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer-tomography based multicompartment body composition technique and anthropometric predictions of lean body mass, total and subcutaneous adipose tissue.
    Sjöström L
    Int J Obes; 1991 Sep; 15 Suppl 2():19-30. PubMed ID: 1794934
    [No Abstract]   [Full Text] [Related]  

  • 8. Research progress in validation of laboratory methods of assessing body composition.
    Lohman TG
    Med Sci Sports Exerc; 1984 Dec; 16(6):596-605. PubMed ID: 6392814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting composition of leg sections with anthropometry and bioelectrical impedance analysis, using magnetic resonance imaging as reference.
    Fuller NJ; Hardingham CR; Graves M; Screaton N; Dixon AK; Ward LC; Elia M
    Clin Sci (Lond); 1999 Jun; 96(6):647-57. PubMed ID: 10334971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of body composition in cats and dogs.
    Munday HS
    Int J Obes Relat Metab Disord; 1994 Jun; 18 Suppl 1():S14-21. PubMed ID: 8087160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of body compositional indices assessed by underwater weighing, bioelectrical impedance and anthropometry in Indonesian adolescent girls.
    Isjwara RI; Lukito W; Schultink JW
    Asia Pac J Clin Nutr; 2007; 16(4):641-8. PubMed ID: 18042523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of upper arm muscle and fat areas using electrical impedance measurements.
    Brown BH; Karatzas T; Nakielny R; Clarke RG
    Clin Phys Physiol Meas; 1988 Feb; 9(1):47-55. PubMed ID: 3359744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body fat estimations by electrical impedance and infra-red interactance.
    Brodie DA; Eston RG
    Int J Sports Med; 1992 May; 13(4):319-25. PubMed ID: 1521946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing change in body composition in children with Duchenne muscular dystrophy: anthropometry and bioelectrical impedance analysis versus dual-energy X-ray absorptiometry.
    Mok E; Letellier G; Cuisset JM; Denjean A; Gottrand F; Hankard R
    Clin Nutr; 2010 Oct; 29(5):633-8. PubMed ID: 20427103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical methods for estimating in vivo body composition: the determination of the adipose compartment.
    Preuss LE; Bolin FP
    Henry Ford Hosp Med J; 1988; 36(2):92-102. PubMed ID: 3068211
    [No Abstract]   [Full Text] [Related]  

  • 16. Validity and reproducibility of ultrasonography for the measurement of intra-abdominal adipose tissue.
    Stolk RP; Wink O; Zelissen PM; Meijer R; van Gils AP; Grobbee DE
    Int J Obes Relat Metab Disord; 2001 Sep; 25(9):1346-51. PubMed ID: 11571598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring body fatness in children and young adults: comparison of bioelectric impedance analysis, total body electrical conductivity, and dual-energy X-ray absorptiometry.
    Ellis KJ
    Int J Obes Relat Metab Disord; 1996 Sep; 20(9):866-73. PubMed ID: 8880356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compatibility of different methods for the measurement of visceral fat in different body mass index strata.
    Berker D; Koparal S; Işik S; Paşaoğlu L; Aydin Y; Erol K; Delibaşi T; Güler S
    Diagn Interv Radiol; 2010 Jun; 16(2):99-105. PubMed ID: 20180182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fat patterning during weight reduction: a multimode investigation.
    Weits T; van der Beek EJ; Wedel M; Hübben MW; Koppeschaar HP
    Neth J Med; 1989 Oct; 35(3-4):174-84. PubMed ID: 2601795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The measurement of total body fat by dual energy X-ray absorptiometry: comparison with skinfold anthropometry, bioelectrical impedance and total body potassium.
    Oldroyd B; Bramley PN; Stewart SP; Simpson M; Truscott JG; Losowsky M; Smith MA
    Basic Life Sci; 1993; 60():93-4. PubMed ID: 8110174
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.