These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 7695847)
1. Extracellular recording in neuronal networks with substrate integrated microelectrode arrays. Hämmerle H; Egert U; Mohr A; Nisch W Biosens Bioelectron; 1994; 9(9-10):691-6. PubMed ID: 7695847 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the Functional Retinal Output Using Microelectrode Arrays. Zeck G Methods Mol Biol; 2018; 1695():81-88. PubMed ID: 29190020 [TBL] [Abstract][Full Text] [Related]
3. A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays. Dabrowski W; Grybos P; Litke AM Biosens Bioelectron; 2004 Feb; 19(7):749-61. PubMed ID: 14709394 [TBL] [Abstract][Full Text] [Related]
4. Population coding in the retina. Nirenberg S; Latham PE Curr Opin Neurobiol; 1998 Aug; 8(4):488-93. PubMed ID: 9751660 [TBL] [Abstract][Full Text] [Related]
5. Spatiotemporal aspects of pulsed electrical stimuli on the responses of rabbit retinal ganglion cells. Jensen RJ; Ziv OR; Rizzo JF; Scribner D; Johnson L Exp Eye Res; 2009 Dec; 89(6):972-9. PubMed ID: 19766116 [TBL] [Abstract][Full Text] [Related]
6. A high-density microelectrode-tissue-microelectrode sandwich platform for application of retinal circuit study. Yang F; Yang CH; Wang FM; Cheng YT; Teng CC; Lee LJ; Yang CH; Fan LS Biomed Eng Online; 2015 Nov; 14():109. PubMed ID: 26611649 [TBL] [Abstract][Full Text] [Related]
7. Intracellular recording of light responses from visually identified ganglion cells in the rabbit retina. Jensen RJ J Neurosci Methods; 1991 Dec; 40(2-3):101-12. PubMed ID: 1800846 [TBL] [Abstract][Full Text] [Related]
8. The extracellular matrix molecule tenascin: expression in the developing chick retinotectal system and substrate properties for retinal ganglion cell neurites in vitro. Bartsch S; Husmann K; Schachner M; Bartsch U Eur J Neurosci; 1995 May; 7(5):907-16. PubMed ID: 7542126 [TBL] [Abstract][Full Text] [Related]
9. Target dependence of chick retinal ganglion cells during embryogenesis: cell survival and dendritic development. Vanselow J; Dütting D; Thanos S J Comp Neurol; 1990 May; 295(2):235-47. PubMed ID: 2358515 [TBL] [Abstract][Full Text] [Related]
10. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip. Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817 [TBL] [Abstract][Full Text] [Related]
11. Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications. Chiappalone M; Vato A; Tedesco MB; Marcoli M; Davide F; Martinoia S Biosens Bioelectron; 2003 May; 18(5-6):627-34. PubMed ID: 12706572 [TBL] [Abstract][Full Text] [Related]
16. Changes in the distribution of labeled retinal ganglion cells after an implant of DiI into the optic nerve in the chick embryos. Chen Y; Hu M; Shibata H; Naito J J Vet Med Sci; 2003 Feb; 65(2):279-81. PubMed ID: 12655129 [TBL] [Abstract][Full Text] [Related]
17. In vitro 2-D networks of neurons characterized by processing the signals recorded with a planar microtransducer array. Bove M; Grattarola M; Verreschi G IEEE Trans Biomed Eng; 1997 Oct; 44(10):964-77. PubMed ID: 9311166 [TBL] [Abstract][Full Text] [Related]
18. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652 [TBL] [Abstract][Full Text] [Related]
19. A model retinal interface based on directed neuronal growth for single cell stimulation. Mehenti NZ; Tsien GS; Leng T; Fishman HA; Bent SF Biomed Microdevices; 2006 Jun; 8(2):141-50. PubMed ID: 16688573 [TBL] [Abstract][Full Text] [Related]
20. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications. Gabriel G; Gómez R; Bongard M; Benito N; Fernández E; Villa R Biosens Bioelectron; 2009 Mar; 24(7):1942-8. PubMed ID: 19056255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]