These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 7695900)
1. Targeting of neuronal subsets mediated by their sequentially expressed carbohydrate markers. Song J; Zipser B Neuron; 1995 Mar; 14(3):537-47. PubMed ID: 7695900 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of the inhibition of axonal defasciculation and arborization mediated by carbohydrate markers in the embryonic leech. Song J; Zipser B Dev Biol; 1995 Apr; 168(2):319-31. PubMed ID: 7729572 [TBL] [Abstract][Full Text] [Related]
3. Sequential steps in synaptic targeting of sensory afferents are mediated by constitutive and developmentally regulated glycosylations of CAMs. Tai MH; Zipser B Dev Biol; 1999 Oct; 214(2):258-76. PubMed ID: 10525333 [TBL] [Abstract][Full Text] [Related]
4. Sequential steps in axonal targeting are mediated by carbohydrate markers. Zipser B J Neurobiol; 1995 Jul; 27(3):326-34. PubMed ID: 7673892 [TBL] [Abstract][Full Text] [Related]
5. Sequential steps of carbohydrate signaling mediate sensory afferent differentiation. Tai MH; Zipser B J Neurocytol; 2002; 31(8-9):743-54. PubMed ID: 14501211 [TBL] [Abstract][Full Text] [Related]
6. Segregation of afferent projections in the central nervous system of the leech Hirudo medicinalis. Peinado A; Zipser B; Macagno ER J Comp Neurol; 1990 Nov; 301(2):232-42. PubMed ID: 1702106 [TBL] [Abstract][Full Text] [Related]
7. Distribution of carbohydrate epitopes among disjoint subsets of leech sensory afferent neurons. Zipser K; Erhardt M; Song J; Cole RN; Zipser B J Neurosci; 1994 Jul; 14(7):4481-93. PubMed ID: 7517997 [TBL] [Abstract][Full Text] [Related]
8. A mannose-specific recognition mediates the defasciculation of axons in the leech CNS. Zipser B; Cole RN J Neurosci; 1991 Nov; 11(11):3471-80. PubMed ID: 1658251 [TBL] [Abstract][Full Text] [Related]
9. Mannose-specific recognition mediates two aspects of synaptic growth of leech sensory afferents: collateral branching and proliferation of synaptic vesicle clusters. Tai MH; Zipser B Dev Biol; 1998 Sep; 201(2):154-66. PubMed ID: 9740656 [TBL] [Abstract][Full Text] [Related]
10. Embryonic development of the stomatogastric nervous system in Drosophila. Hartenstein V; Tepass U; Gruszynski-Defeo E J Comp Neurol; 1994 Dec; 350(3):367-81. PubMed ID: 7884047 [TBL] [Abstract][Full Text] [Related]
11. Defasciculation as a neuronal pathfinding strategy: involvement of a specific glycoprotein. Zipser B; Morell R; Bajt ML Neuron; 1989 Nov; 3(5):621-30. PubMed ID: 2642013 [TBL] [Abstract][Full Text] [Related]
12. Expression of surface glycoproteins early in leech neural development. McGlade-McCulloh E; Muller KJ; Zipser B J Comp Neurol; 1990 Sep; 299(1):123-31. PubMed ID: 1698836 [TBL] [Abstract][Full Text] [Related]
13. Carbohydrate-binding proteins in the leech: II. Lactose-binding protein LL35 is located to neuronal and muscle subsets and all epithelial cells. Cole RN; Zipser B J Neurochem; 1994 Jul; 63(1):75-85. PubMed ID: 8207448 [TBL] [Abstract][Full Text] [Related]
14. Association of LAR-like receptor protein tyrosine phosphatases with an enabled homolog in Hirudo medicinalis. Biswas SC; Dutt A; Baker MW; Macagno ER Mol Cell Neurosci; 2002 Dec; 21(4):657-70. PubMed ID: 12504598 [TBL] [Abstract][Full Text] [Related]
15. Functions of the subesophageal ganglion in the medicinal leech revealed by ablation of neuromeres in embryos. Cornford A; Kristan WB; Malnove S; Kristan WB; French KA J Exp Biol; 2006 Feb; 209(Pt 3):493-503. PubMed ID: 16424099 [TBL] [Abstract][Full Text] [Related]
16. Evolution and development of neural circuits in invertebrates. Katz PS Curr Opin Neurobiol; 2007 Feb; 17(1):59-64. PubMed ID: 17174546 [TBL] [Abstract][Full Text] [Related]
17. Cellular and molecular approaches to neural repair in the medicinal leech. Blackshaw S Prog Neurobiol; 1994 Feb; 42(2):333-8. PubMed ID: 8008832 [TBL] [Abstract][Full Text] [Related]
18. Cell lineage analysis of the Drosophila peripheral nervous system. Brewster R; Bodmer R Dev Genet; 1996; 18(1):50-63. PubMed ID: 8742834 [TBL] [Abstract][Full Text] [Related]
19. Initial formation and secondary condensation of nerve pathways in the medicinal leech. Jellies J; Kopp DM; Johansen KM; Johansen J J Comp Neurol; 1996 Sep; 373(1):1-10. PubMed ID: 8876458 [TBL] [Abstract][Full Text] [Related]
20. Developmentally regulated tissue-associated cues influence axon sprouting and outgrowth and may contribute to target specificity. Harik TM; Attaman J; Crowley AE; Jellies J Dev Biol; 1999 Aug; 212(2):351-65. PubMed ID: 10433826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]