These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 7696271)
1. A positive entropy change for guanosine binding and for the chemical step in the Tetrahymena ribozyme reaction. McConnell TS; Cech TR Biochemistry; 1995 Mar; 34(12):4056-67. PubMed ID: 7696271 [TBL] [Abstract][Full Text] [Related]
2. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes. Kuo LY; Cech TR Nucleic Acids Res; 1996 Oct; 24(19):3722-7. PubMed ID: 8871550 [TBL] [Abstract][Full Text] [Related]
3. Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding. McConnell TS; Cech TR; Herschlag D Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8362-6. PubMed ID: 8378306 [TBL] [Abstract][Full Text] [Related]
4. Binding of guanosine and 3' splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides. Moran S; Kierzek R; Turner DH Biochemistry; 1993 May; 32(19):5247-56. PubMed ID: 8494902 [TBL] [Abstract][Full Text] [Related]
5. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis. Legault P; Herschlag D; Celander DW; Cech TR Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482 [TBL] [Abstract][Full Text] [Related]
6. Contributions of 2'-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA. Herschlag D; Eckstein F; Cech TR Biochemistry; 1993 Aug; 32(32):8299-311. PubMed ID: 7688572 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme. Bevilacqua PC; Li Y; Turner DH Biochemistry; 1994 Sep; 33(37):11340-8. PubMed ID: 7727385 [TBL] [Abstract][Full Text] [Related]
8. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization. Strobel SA; Cech TR Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575 [TBL] [Abstract][Full Text] [Related]
9. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Shan SO; Herschlag D Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151 [TBL] [Abstract][Full Text] [Related]
10. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Strobel SA; Cech TR Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953 [TBL] [Abstract][Full Text] [Related]
11. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Pyle AM; Murphy FL; Cech TR Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367 [TBL] [Abstract][Full Text] [Related]
12. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Herschlag D; Eckstein F; Cech TR Biochemistry; 1993 Aug; 32(32):8312-21. PubMed ID: 7688573 [TBL] [Abstract][Full Text] [Related]
13. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu). Zaug AJ; Dávila-Aponte JA; Cech TR Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Mei R; Herschlag D Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540 [TBL] [Abstract][Full Text] [Related]
15. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis. Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214 [TBL] [Abstract][Full Text] [Related]
16. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions. Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the Azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme. Kuo LY; Davidson LA; Pico S Biochim Biophys Acta; 1999 Dec; 1489(2-3):281-92. PubMed ID: 10673029 [TBL] [Abstract][Full Text] [Related]
18. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Herschlag D; Cech TR Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps. Narlikar GJ; Bartley LE; Khosla M; Herschlag D Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993 [TBL] [Abstract][Full Text] [Related]
20. Guanosine binds to the Tetrahymena ribozyme in more than one step, and its 2'-OH and the nonbridging pro-Sp phosphoryl oxygen at the cleavage site are required for productive docking. Profenno LA; Kierzek R; Testa SM; Turner DH Biochemistry; 1997 Oct; 36(41):12477-85. PubMed ID: 9376352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]