These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 769643)

  • 1. Binding proteins and membrane transport.
    Oxender DL; Quay S
    Ann N Y Acad Sci; 1975 Dec; 264():358-72. PubMed ID: 769643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine transport in Escherichia coli. The resolution of multiple transport systems and their coupling to metabolic energy.
    Wood JM
    J Biol Chem; 1975 Jun; 250(12):4477-85. PubMed ID: 1095572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of sugars and amino acids in bacteria. XVIII. Properties of an isoleucine carrier in the cytoplasmic membrane vesicles of Escherichia coli.
    Yamato I; Anraku Y
    J Biochem; 1977 May; 81(5):1517-23. PubMed ID: 330512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalorimetric study of substrate fixation on the leucine-isoleucine-valine-binding protein from Escherichia coli.
    Gaudin C; Marty B; Belaich A; Sari JC; Belaich JP
    Biochem Biophys Res Commun; 1977 Sep; 78(1):377-82. PubMed ID: 334167
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of leucine transport and binding proteins in Escherichia coli.
    Oxender DL; Quay SC
    J Cell Physiol; 1976 Dec; 89(4):517-21. PubMed ID: 795811
    [No Abstract]   [Full Text] [Related]  

  • 6. Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity.
    Trakhanov S; Vyas NK; Luecke H; Kristensen DM; Ma J; Quiocho FA
    Biochemistry; 2005 May; 44(17):6597-608. PubMed ID: 15850393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation in vivo and in vitro of the arginine-ornithine periplasmic transport protein of Escherichia coli.
    Celis RT
    Eur J Biochem; 1984 Dec; 145(2):403-11. PubMed ID: 6389134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplicity of leucine transport systems in Escherichia coli K-12.
    Rahmanian M; Claus DR; Oxender DL
    J Bacteriol; 1973 Dec; 116(3):1258-66. PubMed ID: 4584809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components.
    Bohl E; Shuman HA; Boos W
    J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of maltose transport in Escherichia coli: established facts and educated guesses.
    Boos W
    Ann Microbiol (Paris); 1982 Jan; 133A(1):145-51. PubMed ID: 7041737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo.
    Mimmack ML; Gallagher MP; Pearce SR; Hyde SC; Booth IR; Higgins CF
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8257-61. PubMed ID: 2682642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino-acid-binding protein released from Escherichia coli by osmotic shock.
    Piperno JR; Oxender DL
    J Biol Chem; 1966 Dec; 241(23):5732-4. PubMed ID: 5333202
    [No Abstract]   [Full Text] [Related]  

  • 14. Transport of sugars and amino acids in bacteria. XVI. Theory and evaluation of a model for the membrane transport reaction mediated by a single carrier with three binding sites for substrate.
    Awazu S; Amanuma H; Morikawa A; Anraku Y
    J Biochem; 1975 Nov; 78(5):1047-56. PubMed ID: 765325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of leucine transport in yeast by periplasmic binding proteins.
    Wainer SR; Boveris A; Ramos EH
    Arch Biochem Biophys; 1988 May; 262(2):481-90. PubMed ID: 3364977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins.
    Davidson AL; Shuman HA; Nikaido H
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2360-4. PubMed ID: 1549599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periplasmic binding protein-dependent transport systems: the membrane-associated components.
    Higgins CF; Gallagher MP; Hyde SC; Mimmack ML; Pearce SR
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):353-64; discussion 364-5. PubMed ID: 1970642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli transport mutants lacking binding protein and other components of the branched-chain amino acid transport systems.
    Anderson JJ; Oxender DL
    J Bacteriol; 1977 Apr; 130(1):384-92. PubMed ID: 323236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The leucine binding proteins of Escherichia coli as models for studying the relationships between protein structure and function.
    Antonucci TK; Landick R; Oxender DL
    J Cell Biochem; 1985; 29(3):209-16. PubMed ID: 4077929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.