These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 7696467)

  • 1. The P-region and S6 of Kv3.1 contribute to the formation of the ion conduction pathway.
    Aiyar J; Nguyen AN; Chandy KG; Grissmer S
    Biophys J; 1994 Dec; 67(6):2261-4. PubMed ID: 7696467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels.
    Shieh CC; Kirsch GE
    Biophys J; 1994 Dec; 67(6):2316-25. PubMed ID: 7696472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels.
    Harris RE; Isacoff EY
    Biophys J; 1996 Jul; 71(1):209-19. PubMed ID: 8804604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single residue in the S6 transmembrane domain governs the differential flecainide sensitivity of voltage-gated potassium channels.
    Herrera D; Mamarbachi A; Simoes M; Parent L; Sauvé R; Wang Z; Nattel S
    Mol Pharmacol; 2005 Aug; 68(2):305-16. PubMed ID: 15883204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels.
    Bretschneider F; Wrisch A; Lehmann-Horn F; Grissmer S
    Biophys J; 1999 May; 76(5):2351-60. PubMed ID: 10233054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.
    Pascual JM; Shieh CC; Kirsch GE; Brown AM
    Biophys J; 1995 Aug; 69(2):428-34. PubMed ID: 8527656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidine substitution identifies a surface position and confers Cs+ selectivity on a K+ pore.
    De Biasi M; Drewe JA; Kirsch GE; Brown AM
    Biophys J; 1993 Sep; 65(3):1235-42. PubMed ID: 8241404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of internal and external tetraethylammonium block in four homologous K+ channels.
    Taglialatela M; Vandongen AM; Drewe JA; Joho RH; Brown AM; Kirsch GE
    Mol Pharmacol; 1991 Aug; 40(2):299-307. PubMed ID: 1875913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evidence for a role of Shaw (Kv3) potassium channel subunits in potassium currents of dog atrium.
    Yue L; Wang Z; Rindt H; Nattel S
    J Physiol; 2000 Sep; 527 Pt 3(Pt 3):467-78. PubMed ID: 10990534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exchange of conduction pathways between two related K+ channels.
    Hartmann HA; Kirsch GE; Drewe JA; Taglialatela M; Joho RH; Brown AM
    Science; 1991 Feb; 251(4996):942-4. PubMed ID: 2000495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The S4-S5 loop contributes to the ion-selective pore of potassium channels.
    Slesinger PA; Jan YN; Jan LY
    Neuron; 1993 Oct; 11(4):739-49. PubMed ID: 8398157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single nonpolar residue in the deep pore of related K+ channels acts as a K+:Rb+ conductance switch.
    Kirsch GE; Drewe JA; Taglialatela M; Joho RH; DeBiasi M; Hartmann HA; Brown AM
    Biophys J; 1992 Apr; 62(1):136-43; discussion 143-4. PubMed ID: 1600093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of voltage-gated K+ channel permeability to NMDG+ by a residue at the outer pore.
    Wang Z; Wong NC; Cheng Y; Kehl SJ; Fedida D
    J Gen Physiol; 2009 Apr; 133(4):361-74. PubMed ID: 19332619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of deep pore mutations on the action of phenylalkylamines on the Kv1.3 potassium channel.
    Rauer H; Grissmer S
    Br J Pharmacol; 1999 Jul; 127(5):1065-74. PubMed ID: 10455250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region.
    Yool AJ; Schwarz TL
    Nature; 1991 Feb; 349(6311):700-4. PubMed ID: 1899917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels.
    Fu W; Cui M; Briggs JM; Huang X; Xiong B; Zhang Y; Luo X; Shen J; Ji R; Jiang H; Chen K
    Biophys J; 2002 Nov; 83(5):2370-85. PubMed ID: 12414674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.