These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 7696489)

  • 1. Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach.
    Beauvoit B; Kitai T; Chance B
    Biophys J; 1994 Dec; 67(6):2501-10. PubMed ID: 7696489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved spectroscopy of mitochondria, cells and tissues under normal and pathological conditions.
    Beauvoit B; Chance B
    Mol Cell Biochem; 1998 Jul; 184(1-2):445-55. PubMed ID: 9746339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors.
    Beauvoit B; Evans SM; Jenkins TW; Miller EE; Chance B
    Anal Biochem; 1995 Mar; 226(1):167-74. PubMed ID: 7785769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in optical properties of ex vivo rat prostate due to heating.
    Skinner MG; Everts S; Reid AD; Vitkin IA; Lilge L; Sherar MD
    Phys Med Biol; 2000 May; 45(5):1375-86. PubMed ID: 10843110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling.
    Wilson JD; Bigelow CE; Calkins DJ; Foster TH
    Biophys J; 2005 Apr; 88(4):2929-38. PubMed ID: 15653724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spatial variation of the refractive index in biological cells.
    Beuthan J; Minet O; Helfmann J; Herrig M; Müller G
    Phys Med Biol; 1996 Mar; 41(3):369-82. PubMed ID: 8778819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of optical properties and blood oxygenation in tissue using continuous NIR light.
    Liu H; Boas DA; Zhang Y; Yodh AG; Chance B
    Phys Med Biol; 1995 Nov; 40(11):1983-93. PubMed ID: 8587945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water permeability of rat liver mitochondria: A biophysical study.
    Calamita G; Gena P; Meleleo D; Ferri D; Svelto M
    Biochim Biophys Acta; 2006 Aug; 1758(8):1018-24. PubMed ID: 16934743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to estimate the ratio of absorption coefficients of two wavelengths using phase modulated near infrared light spectroscopy.
    Haida M; Chance B
    Adv Exp Med Biol; 1994; 345():829-35. PubMed ID: 8079793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy.
    Kitai T; Beauvoit B; Chance B
    Transplantation; 1996 Sep; 62(5):642-7. PubMed ID: 8830830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of light scattering and absorption properties of in vivo rat liver using a single-reflectance fiber probe during preischemia, ischemia-reperfusion, and postmortem.
    Akter S; Maejima S; Kawauchi S; Sato S; Hinoki A; Aosasa S; Yamamoto J; Nishidate I
    J Biomed Opt; 2015 Jul; 20(7):076010. PubMed ID: 26214615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering from suspensions of membrane fragments derived from sonication of beef heart mitochondria.
    Storey BT; Lee CP; Papa S; Rosen SG; Simon G
    Biochemistry; 1976 Feb; 15(4):928-33. PubMed ID: 2291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodamine 800 as a probe of energization of cells and tissues in the near-infrared region: a study with isolated rat liver mitochondria and hepatocytes.
    Sakanoue J; Ichikawa K; Nomura Y; Tamura M
    J Biochem; 1997 Jan; 121(1):29-37. PubMed ID: 9058188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Tyndall's hypochromism in suspensions].
    Vekshin NL; Frolova MS; Kovalev VI; Begunova EA
    Biofizika; 2015; 60(1):129-35. PubMed ID: 25868350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of angular distributions of Rayleigh and Mie scattering events in biological models.
    Frank KH; Kessler M; Appelbaum K; Albrecht HP; Mauch ED
    Phys Med Biol; 1989 Dec; 34(12):1901-16. PubMed ID: 2616640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy.
    Beauvoit B; Liu H; Kang K; Kaplan PD; Miwa M; Chance B
    Cell Biophys; 1993; 23(1-3):91-109. PubMed ID: 7895251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement method of optical properties of ex vivo biological tissues of rats in the near-infrared range.
    Sanchez-Cano A; Saldaña-Díaz JE; Perdices L; Pinilla I; Salgado-Remacha FJ; Jarabo S
    Appl Opt; 2020 May; 59(13):D111-D117. PubMed ID: 32400631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on the optical properties of ex vivo human dermis and subdermis.
    Laufer J; Simpson R; Kohl M; Essenpreis M; Cope M
    Phys Med Biol; 1998 Sep; 43(9):2479-89. PubMed ID: 9755940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The optical properties of lung as a function of respiration.
    Beek JF; van Staveren HJ; Posthumus P; Sterenborg HJ; van Gemert MJ
    Phys Med Biol; 1997 Nov; 42(11):2263-72. PubMed ID: 9394411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging.
    Firbank M; Oda M; Delpy DT
    Phys Med Biol; 1995 May; 40(5):955-61. PubMed ID: 7652018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.